首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 6000 contact regions (patches) of helix-to-helix packing from 300 well-resolved non-homologous protein structures were considered. The patches were defined by the spatial helical neighbors and were estimated in atomic detail using a variable distance criterion. The following questions are addressed. (1) Are the amino acid preferences and atomic composition of distinct types of helical patches indicative for the type of their neighbor? Distributions of size, atomic composition and packing density are compared for different types of helical interfaces. Thereby contact preferences are derived for parts of secondary structures adjoining each other or pointing towards the solvent. (2) Is it possible to cluster helical patches according to their structural similarity? For these purposes the patches were classified with an automatic sequence-independent superposition procedure which yields a distinctively reduced set of representative interfaces. On this basis, the methodology for finding exchangeable patches in different proteins is demonstrated.  相似文献   

2.
A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue–residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue–residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Data sets of 362 structurally nonredundant protein-protein interfaces and of 57 symmetry-related oligomeric interfaces have been used to explore whether the hydrophobic effect that guides protein folding is also the main driving force for protein-protein associations. The buried nonpolar surface area has been used to measure the hydrophobic effect. Our analysis indicates that, although the hydrophobic effect plays a dominant role in protein-protein binding, it is not as strong as that observed in the interior of protein monomers. Comparison of interiors of the monomers with those of the interfaces reveals that, in general, the hydrophobic amino acids are more frequent in the interior of the monomers than in the interior of the protein-protein interfaces. On the other hand, a higher proportion of charged and polar residues are buried at the interfaces, suggesting that hydrogen bonds and ion pairs contribute more to the stability of protein binding than to that of protein folding. Moreover, comparison of the interior of the interfaces to protein surfaces indicates that the interfaces are poorer in polar/charged than the surfaces and are richer in hydrophobic residues. The interior of the interfaces appears to constitute a compromise between the stabilization contributed by the hydrophobic effect on the one hand and avoiding patches on the protein surfaces that are too hydrophobic on the other. Such patches would be unfavorable for the unassociated monomers in solution. We conclude that, although the types of interactions are similar between protein-protein interfaces and single-chain proteins overall, the contribution of the hydrophobic effect to protein-protein associations is not as strong as to protein folding. This implies that packing patterns and interatom, or interresidue, pairwise potential functions, derived from monomers, are not ideally suited to predicting and assessing ligand associations or design. These would perform adequately only in cases where the hydrophobic effect at the binding site is substantial.  相似文献   

4.
Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP) complexes and protein-ligand (PL) complexes with known three-dimensional structures for which (1) one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2) the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10 000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.  相似文献   

5.
Hydrophobic patches, defined as clusters of neighboring apolar atoms deemed accessible on a given protein surface, have been investigated on protein subunit interfaces. The data were taken from known tertiary structures of multimeric protein complexes. Amino acid composition and preference, patch size distribution, and patch contact complementarity across associating subunits were examined and compared with hydrophobic patches found on the solvent-accessible surface of the multimeric complexes. The largest or second largest patch on the accessible surface of the entire subunit was involved in multimeric interfaces in 90% of the cases. These results should prove useful for subunit design and engineering as well as for prediction of subunit interface regions. Proteins 28:333–343, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
An analysis of cavities present in protein–DNA and protein–RNA complexes is presented. In terms of the number of cavities and their total volume, the interfaces formed in these complexes are akin to those in transient protein–protein heterocomplexes. With homodimeric proteins protein–DNA interfaces may contain cavities involving both the protein subunits and DNA, and these are more than twice as large as cavities involving a single protein subunit and DNA. A parameter, cavity index, measuring the degree of surface complementarity, indicates that the packing of atoms in protein–protein/DNA/RNA is very similar, but it is about two times less efficient in the permanent interfaces formed between subunits in homodimers. As within the tertiary structure and protein–protein interfaces, protein–DNA interfaces have a higher inclination to be lined by β-sheet residues; from the DNA side, base atoms, in particular those in minor grooves, have a higher tendency to be located in cavities. The larger cavities tend to be less spherical and solvated. A small fraction of water molecules are found to mediate hydrogen-bond interactions with both the components, suggesting their primary role is to fill in the void left due to the local non-complementary nature of the surface patches.  相似文献   

7.
It is observed that during divergent evolution of two proteins with a common phylogenetic origin, the structural similarity of their backbones is often preserved even when the sequence similarity between them decreases to a virtually undetectable level. Here we analyzed, whether the conservation of structure along evolution involves also the local atomic structures in the interfaces between secondary structural elements. We have used as study case one protein family, the proteasomal subunits, for which 17 crystal structures are known. These include 14 different subunits of Saccharomyces cerevisiae, 2 subunits of Thermoplasma acidophilum and one subunit of Escherichia coli. The structural core of the 17 proteasomal subunits has 23 secondary structural elements. Any two adjacent secondary structural elements form a molecular interface consisting of two molecular patches. We found 61 interfaces that occurred in all 17 subunits. The 3D shape of equivalent molecular patches from different proteasomal subunits were compared by superposition. Our results demonstrate that pairs of equivalent molecular patches show an RMSD which is lower than that of randomly chosen patches from unrelated proteins. This is true even when patch comparisons with identical residues were excluded from the analysis. Furthermore it is known that the sequential dissimilarity is correlated to the RMSD between the backbones of the members of protein families. The question arises whether this is also true for local atomic structures. The results show that the correlation of individual patch RMSD values and local sequence dissimilarities is low and has a wide range from 0 to 0.41, however, it is surprising that there is a good correlation between the average RMSD of all corresponding patches and the global sequence dissimilarity. This average patch RMSD correlates slightly stronger than the C(alpha)-trace RMSD to the global sequence dissimilarity.  相似文献   

8.
We describe a fully automated algorithm for finding functional sites on protein structures. Our method finds surface patches of unusual physicochemical properties on protein structures, and estimates the patches' probability of overlapping functional sites. Other methods for predicting the locations of specific types of functional sites exist, but in previous analyses, it has been difficult to compare methods when they are applied to different types of sites. Thus, we introduce a new statistical framework that enables rigorous comparisons of the usefulness of different physicochemical properties for predicting virtually any kind of functional site. The program's statistical models were trained for 11 individual properties (electrostatics, concavity, hydrophobicity, etc.) and for 15 neural network combination properties, all optimized and tested on 15 diverse protein functions. To simulate what to expect if the program were run on proteins of unknown function, as might arise from structural genomics, we tested it on 618 proteins of diverse mixed functions. In the higher-scoring top half of all predictions, a functional residue could typically be found within the first 1.7 residues chosen at random. The program may or may not use partial information about the protein's function type as an input, depending on which statistical model the user chooses to employ. If function type is used as an additional constraint, prediction accuracy usually increases, and is particularly good for enzymes, DNA-interacting sites, and oligomeric interfaces. The program can be accessed online (at http://hotpatch.mbi.ucla.edu).  相似文献   

9.
The subunit interfaces of 122 homodimers of known three-dimensional structure are analyzed and dissected into sets of surface patches by clustering atoms at the interface; 70 interfaces are single-patch, the others have up to six patches, often contributed by different structural domains. The average interface buries 1,940 A2 of the surface of each monomer, contains one or two patches burying 600-1,600 A2, is 65% nonpolar and includes 18 hydrogen bonds. However, the range of size and of hydrophobicity is wide among the 122 interfaces. Each interface has a core made of residues with atoms buried in the dimer, surrounded by a rim of residues with atoms that remain accessible to solvent. The core, which constitutes 77% of the interface on average, has an amino acid composition that resembles the protein interior except for the presence of arginine residues, whereas the rim is more like the protein surface. These properties of the interfaces in homodimers, which are permanent assemblies, are compared to those of protein-protein complexes where the components associate after they have independently folded. On average, subunit interfaces in homodimers are twice larger than in complexes, and much less polar due to the large fraction belonging to the core, although the amino acid compositions of the cores are similar in the two types of interfaces.  相似文献   

10.
Zhao N  Pang B  Shyu CR  Korkin D 《PloS one》2011,6(5):e19554
Interactions between proteins play a key role in many cellular processes. Studying protein-protein interactions that share similar interaction interfaces may shed light on their evolution and could be helpful in elucidating the mechanisms behind stability and dynamics of the protein complexes. When two complexes share structurally similar subunits, the similarity of the interaction interfaces can be found through a structural superposition of the subunits. However, an accurate detection of similarity between the protein complexes containing subunits of unrelated structure remains an open problem. Here, we present an alignment-free machine learning approach to measure interface similarity. The approach relies on the feature-based representation of protein interfaces and does not depend on the superposition of the interacting subunit pairs. Specifically, we develop an SVM classifier of similar and dissimilar interfaces and derive a feature-based interface similarity measure. Next, the similarity measure is applied to a set of 2,806×2,806 binary complex pairs to build a hierarchical classification of protein-protein interactions. Finally, we explore case studies of similar interfaces from each level of the hierarchy, considering cases when the subunits forming interactions are either homologous or structurally unrelated. The analysis has suggested that the positions of charged residues in the homologous interfaces are not necessarily conserved and may exhibit more complex conservation patterns.  相似文献   

11.
Surface, subunit interfaces and interior of oligomeric proteins   总被引:41,自引:0,他引:41  
The solvent-accessible surface area (As) of 23 oligomeric proteins is calculated using atomic co-ordinates from high-resolution and well-refined crystal structures. As is correlated with the protein molecular weight, and a power law predicts its value to within 5% on average. The accessible surface of the average oligomer is similar to that of monomeric proteins in its hydropathy and amino acid composition. The distribution of the 20 amino acid types between the protein surface and its interior is also the same as in monomers. Interfaces, i.e. surfaces involved in subunit contacts, differ from the rest of the subunit surface. They are enriched in hydrophobic side-chains, yet they contain a number of charged groups, especially from Arg residues, which are the most abundant residues at interfaces except for Leu. Buried Arg residues are involved in H-bonds between subunits. We counted H-bonds at interfaces and found that several have none, others have one H-bond per 200 A2 of interface area on average (1 A = 0.1 nm). A majority of interface H-bonds involve charged donor or acceptor groups, which should make their contribution to the free energy of dissociation significant, even when they are few. The smaller interfaces cover about 700 A2 of the subunit surface. The larger ones cover 3000 to 10,000 A2, up to 40% of the subunit surface area in catalase. The lower value corresponds to an estimate of the accessible surface area loss required for stabilizing subunit association through the hydrophobic effect alone. Oligomers with small interfaces have globular subunits with accessible surface areas similar to those of monomeric proteins. We suggest that these oligomers assemble from preformed monomers with little change in conformation. In oligomers with large interfaces, isolated subunits should be unstable given their excessively large accessible surface, and assembly is expected to require major structural changes.  相似文献   

12.
The function of DNA‐ and RNA‐binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure‐based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high‐resolution three‐dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I‐TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high‐resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I‐TASSER produces high‐quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low‐resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination. However, using a novel surface-patch definition, we find that the interface is rarely significantly more conserved than other surface patches when using either alignment type. When an interface is among the most conserved surface patches, it tends to be part of an enzyme active site. The most conserved surface patch overlaps with 39% (+/- 28%) and 36% (+/- 28%) of the actual interface for diverse and close homologs, respectively. Contrary to results obtained from smaller data sets, this work indicates that residue conservation is rarely sufficient for complete and accurate prediction of protein interfaces. Finally, we find that obligate interfaces differ from transient interfaces in that the former have significantly fewer alignment gaps at the interface than the rest of the protein surface, as well as having buried interface residues that are more conserved than partially buried interface residues.  相似文献   

14.
Understanding energetics and mechanism of protein-protein association remains one of the biggest theoretical problems in structural biology. It is assumed that desolvation must play an essential role during the association process, and indeed protein-protein interfaces in obligate complexes have been found to be highly hydrophobic. However, the identification of protein interaction sites from surface analysis of proteins involved in non-obligate protein-protein complexes is more challenging. Here we present Optimal Docking Area (ODA), a new fast and accurate method of analyzing a protein surface in search of areas with favorable energy change when buried upon protein-protein association. The method identifies continuous surface patches with optimal docking desolvation energy based on atomic solvation parameters adjusted for protein-protein docking. The procedure has been validated on the unbound structures of a total of 66 non-homologous proteins involved in non-obligate protein-protein hetero-complexes of known structure. Optimal docking areas with significant low-docking surface energy were found in around half of the proteins. The 'ODA hot spots' detected in X-ray unbound structures were correctly located in the known protein-protein binding sites in 80% of the cases. The role of these low-surface-energy areas during complex formation is discussed. Burial of these regions during protein-protein association may favor the complexed configurations with near-native interfaces but otherwise arbitrary orientations, thus driving the formation of an encounter complex. The patch prediction procedure is freely accessible at http://www.molsoft.com/oda and can be easily scaled up for predictions in structural proteomics.  相似文献   

15.
16.
Many proteins function by interacting with other small molecules (ligands). Identification of ligand‐binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand‐binding protein sequences and functions. Consequently, we classified the patches into ~2000 well‐characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross‐fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes.  相似文献   

17.
MOTIVATION: The solubility of a protein is crucial for its function and is therefore an evolutionary constraint. As the solubility of a protein is related to the distribution of polar and hydrophobic residues on its solvent accessible surface, such a constraint should provide a valuable insight into the evolution of protein surfaces. We examine how the surfaces of proteins have evolved by considering how the average hydrophobicities of patches of surface residues vary across homologous proteins. We derive distributions for the average hydrophobicity/philicity of surface patches at a residue-based level-which we refer to as the residue hydrophobic density. This is computed for a set of 28 monomeric proteins and their homologues. The resulting distributions are compared with a set of randomized sequences, with the same residue content. RESULTS: We find that the patches, involving typically more than 10 residues, maintain a more hydrophilic surface than one would expect from a random substitution model, indicating a cooperative behaviour for these surfaces residues in terms of this single variable. SUPPLEMENTARY INFORMATION: Additional plots for all of the proteins examined in this paper can be found at: http://www.ebi.ac.uk/~shanahan/PCon/index.html  相似文献   

18.
19.
A survey of hydrophobic patches on the surface of 112 soluble, monomeric proteins is presented. The largest patch on each individual protein averages around 400 Å2 but can range from 200 to 1,200 Å2. These areas are not correlated to the sizes of the proteins and only weakly to their apolar surface fraction. Ala, Lys, and Pro have dominating contributions to the apolar surface for smaller patches, while those of the hydrophobic amino acids become more important as the patch size Increases. The hydrophilic amino acids expose an approximately constant fraction of their apolar area independent of patch size; the hydrophobic residue types reach similar exposure only in the larger patches. Though the mobility of residues on the surface is generally higher, it decreases for hydrophilic residues with Increasing patch size. Several characteristics of hydrophobic patches catalogued here should prove useful in the design and engineering of proteins. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号