首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others.  相似文献   

2.
Within each cell cycle, a cell must ensure that the processes of selection of replication origins (licensing) and initiation of DNA replication are well coordinated to prevent re-initiation of DNA replication from the same DNA segment during the same cell cycle. This is achieved by restricting the licensing process to G1 phase when the prereplicative complexes (preRCs) are assembled onto the origin DNA, while DNA replication is initiated only during S phase when de novo preRC assembly is blocked. Cdt1 is an important member of the preRC complex and its tight regulation through ubiquitin-dependent proteolysis and binding to its inhibitor Geminin ensure that Cdt1 will only be present in G1 phase, preventing relicensing of replication origins. We have recently reported that Cdt1 associates with chromatin in a dynamic way and recruits its inhibitor Geminin onto chromatin in vivo. Here we discuss how these dynamic Cdt1-chromatin interactions and the local recruitment of Geminin onto origins of replication by Cdt1 may provide a tight control of the licensing process in time and in space.  相似文献   

3.
A common mechanism has emerged for the control of the initiation of eukaryotic DNA replication. The minichromosome maintenance protein complex (MCM) and Cdc45 have now been recognized as central components of the initiation machinery. In addition, two types of S phase promoting kinases conserved between yeast and humans play critical roles in the initiation reaction. At the onset of S phase, S phase kinases promote the association of Cdc45 with MCM at origins. Upon the formation of the MCM-Cdc45 complex at origins, the duplex DNA is unwound and various replication proteins, including DNA polymerases, are recruited onto unwound DNA. The increasing number of newly identified factors involved in the initiation reaction indicates that the control of initiation requires highly evolved machinery in eukaryotic cells.  相似文献   

4.
The Neolithisation of Europe has seen the transformation of hunting-gathering societies into farming communities. At least partly exogenous in its origins, this process led to major transformations in many aspects of life-styles, such as social structures, land use or diet. It involved the arrival of new human populations and gave way to the importation, intentional or unwanted of many non-European animal and plant species. It also provoked important changes in interactions between humans and natural environments. In many respects, it set the foundations of long-term European peasantry developments and prefigured later agropastoral colonizations. As such, it must be seen as a major turning point in the history of European populations.  相似文献   

5.
Eukaryotic DNA replication initiates at multiple origins. In early fly and frog embryos, chromosomal replication is very rapid and initiates without sequence specificity. Despite this apparent randomness, the spacing of these numerous initiation sites must be sufficiently regular for the genome to be completely replicated on time. Studies in various eukaryotes have revealed that there is a strict temporal separation of origin "licensing" prior to S phase and origin activation during S phase. This may suggest that replicon size must be already established at the licensing stage. However, recent experiments suggest that a large excess of potential origins are assembled along chromatin during licensing. Thus, a regular replicon size may result from the selection of origins during S phase. We review single molecule analyses of origin activation and other experiments addressing this issue and their general significance for eukaryotic DNA replication.  相似文献   

6.
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.  相似文献   

7.
8.
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein–protein and protein–DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis‐acting sequences that serve as replication origins and the trans‐acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed. J. Cell. Biochem. 106: 512–520, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Mechanistically, an origin of bidirectional DNA replication (OBR) can be defined by the transition from discontinuous to continuous DNA synthesis that must occur on each template strand at the site where replication forks originate. This results from synthesis of Okazaki fragments predominantly on the retrograde arms of forks. We have identified these transitions at a specific site within a 0.45 kb sequence approximately 17 kb downstream from the 3' end of the dihydrofolate reductase gene in Chinese hamster ovary chromosomes. At least 80% of the replication forks in a 27 kb region emanated from this OBR. Thus, initiation of DNA replication in mammalian chromosomes uses the same replication fork mechanism previously described in a variety of prokaryotic and eukaryotic genomes, suggesting that mammalian chromosomes also utilize specific cis-acting sequences as origins of DNA replication.  相似文献   

10.
Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.  相似文献   

11.
O Hyrien  M Mchali 《The EMBO journal》1993,12(12):4511-4520
We have analysed the replication of the chromosomal ribosomal DNA (rDNA) cluster in Xenopus embryos before the midblastula transition. Two-dimensional gel analysis showed that replication forks are associated with the nuclear matrix, as in differentiated cells, and gave no evidence for single-stranded replication intermediates (RIs). Bubbles, simple forks and double Ys were found in each restriction fragment analysed, showing that replication initiates and terminates without detectable sequence specificity. Quantification of the results and mathematical analysis showed that the average rDNA replicon replicates in 7.5 min and is 9-12 kbp in length. This time is close to the total S phase duration, and this replicon size is close to the maximum length of DNA which can be replicated from a single origin within this short S phase. We therefore infer that (i) most rDNA origins must be synchronously activated soon in S phase and (ii) origins must be evenly spaced, in order that no stretch of chromosomal DNA is left unreplicated at the end of S phase. Since origins are not specific sequences, it is suggested that this spatially and temporally concerted pattern of initiation matches some periodic chromatin folding, which itself need not rely on DNA sequence.  相似文献   

12.
13.
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome‐wide studies in vertebrates have recently identified a consensus G‐rich motif potentially able to form G‐quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200‐bp cis‐regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.  相似文献   

14.
New advances in developmental genetics are providing a bridge to connect the study of development and evolution. The successful integration of these fields, however, is dependent on having a clear understanding of the concept of homology. Therefore, developmental genetic data must be placed within the context of the comparative method to provide insight into the evolutionary and developmental origins of traits. The comparative analysis of traits derived from several hierarchical levels (genes, gene expression patterns, embryonic origins and morphology) can potentially reveal scenarios of developmental integration, opportunity and constraint. Moreover, this approach has implications for resolving modern controversies surrounding the concept of homology.  相似文献   

15.
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.  相似文献   

16.
All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole chromosome replication where the dynamics are based upon the parameters of individual origins. Using this model we demonstrate that mean replication time at any given chromosome position is determined collectively by the parameters of all origins. Combining parameter estimation with extensive simulations we show that there is a range of model parameters consistent with mean replication data, emphasising the need for caution in interpreting such data. In contrast, the replicated-fraction at time points through S phase contains more information than mean replication time data and allowed us to use our model to uniquely estimate many origin parameters. These estimated parameters enable us to make a number of predictions that showed agreement with independent experimental data, confirming that our model has predictive power. In summary, we demonstrate that a stochastic model can recapitulate experimental observations, including those that might be interpreted as deterministic such as ordered origin activation times.  相似文献   

17.
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere‐binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere‐like sequence near the origins. Here, we showed using a lacO/LacI‐GFP system that Taz1‐dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication‐timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication‐timing control and telomeric association of Taz1‐dependent late origins, and this requirement was bypassed by a minishelterin Tpz1‐Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin‐mediated telomeric association of the origins at the onset of S phase.  相似文献   

18.
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.  相似文献   

19.
Li A  Blow JJ 《Nature cell biology》2004,6(3):260-267
In late mitosis and G1, a complex of the essential initiation proteins Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other times licensing is inhibited by cyclin-dependent kinases (CDKs) and geminin, thus ensuring that origins fire only once per cell cycle. Here we show that, paradoxically, CDKs are also required to inactivate geminin and activate the licensing system. On exit from metaphase in Xenopus laevis egg extracts, CDK-dependent activation of the anaphase-promoting complex (APC/C) results in the transient polyubiquitination of geminin. This ubiquitination triggers geminin inactivation without requiring ubiquitin-dependent proteolysis, and is essential for replication origins to become licensed. This reveals an unexpected role for CDKs and ubiquitination in activating chromosomal DNA replication.  相似文献   

20.
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号