首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A phylogenetic-comparative approach was used to assess and refine existing secondary structure models for a frequently studied region of the mitochondrial encoded large subunit (16S) rRNA in two large lizard lineages within the Scincomorpha, namely the Scincidae and the Lacertidae. Potential pairings and mutual information were analyzed to identify site interactions present within each lineage and provide consensus secondary structures. Many of the interactions proposed by previous models were supported, but several refinements were possible. The consensus structures allowed a detailed analysis of rRNA sequence evolution. Phylogenetic trees were inferred from Bayesian analyses of all sites, and the topologies used for maximum likelihood estimation of sequence evolution parameters. Assigning gamma-distributed relative rate categories to all interacting sites that were homologous between lineages revealed substantial differences between helices. In both lineages, sites within helix G2 were mostly conserved, while those within helix E18 evolved rapidly. Clear evidence of substantial site-specific rate variation (covarion-like evolution) was also detected, although this was not strongly associated with specific helices. This study, in conjunction with comparable findings on different, higher-level taxa, supports the ubiquitous nature of site-specific rate variation in this gene and justifies the incorporation of covarion models in phylogenetic inference.Reviewing Editor: Dr. Yves Van de Peer  相似文献   

2.
During protein synthesis, the ribosome undergoes conformational transitions between functional states, requiring communication between distant structural elements of the ribosome. Despite advances in ribosome structural biology, identifying the protein and rRNA residues governing these transitions remains a significant challenge. Such residues can potentially be identified genetically, given the predicted deleterious effects of mutations stabilizing the ribosome in discrete conformations and the expected ameliorating effects of second-site compensatory mutations. In this study, we employed genetic selections and experimental evolution to identify interacting mutations in the ribosome of the thermophilic bacterium Thermus thermophilus. By direct genetic selections, we identified mutations in 16S rRNA conferring a streptomycin dependence phenotype and from these derived second-site suppressor mutations relieving dependence. Using experimental evolution of streptomycin-independent pseudorevertants, we identified additional compensating mutations. Similar mutations could be evolved from slow-growing streptomycin-resistant mutants. While some mutations arose close to the site of the original mutation in the three-dimensional structure of the 30S ribosomal subunit and probably act directly by compensating for local structural distortions, the locations of others are consistent with long-range communication between specific structural elements within the ribosome.  相似文献   

3.
Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota.  相似文献   

4.
This study provides a phylogenetic/comparative approach to deciphering the processes underlying the evolution of plastid rRNA genes in genomes under relaxed functional constraints. Nonphotosynthetic green algal taxa that belong to two distinct classes, Chlorophyceae (Polytoma) and Trebouxiophyceae (Prototheca), were investigated. Similar to the situation described previously for plastid 16S rRNA genes in nonphotosynthetic land plants, nucleotide substitution levels, extent of structural variations, and percentage AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives. However, the mutational processes appear to be different in many respects. First, with the increase in AT content, more transversions are noted in Polytoma and holoparasite angiosperms, while more transitions characterize the evolution of the 16S rDNA sequences in Prototheca. Second, although structural variations do accumulate in both Polytoma and Prototheca (as well as holoparasitic plastid 16S rRNAs), insertions as large as 1.6 kb characterize the plastid 16S rRNA genes in the former, whereas significantly smaller indels (not exceeding 24 bp) seem to be more prevalent in the latter group. The differences in evolutionary rates and patterns within and between lineages might be due to mutations in replication/repair-related genes; slipped-strand mispairing is likely the mechanism responsible for the expansion of insertions in Polytoma plastid 16S rRNA genes. Received: 29 December 2000 / Accepted: 18 May 2001  相似文献   

5.
6.
利用多对引物,扩增并测定出大黄鱼16SrRNA基因和18SrRNA基因的部分序列,其长度分别为1202bp和1275bp,16SrRNA基因序列的GC含量为46.12%,18SrRNA基因的Gc含量为53.oo%。将大黄鱼16SrRNA基因序列与GenBank中15种硬骨鱼类的同源序列结合,同时将其18SrRNA基因序列与GenBank中9种脊索动物的同源序列相结合,运用软件获得各自序列间差异百分比,转换和颠换数值等信息。基于这两种基因序列,利用NJ法和BI法,分别构建16种硬骨鱼类和10种脊索动物的分子系统树。18SrRNA构建的系统树包括三大支,一支为哺乳类、鸟类和爬行类共6个物种,一支为两栖类的1个物种,另一支为2种硬骨鱼类。16SrRNA构建的系统树显示大黄鱼所在的石首鱼科与鲈科和盖刺鱼科亲缘关系较近。此外还讨论了这两个基因的序列特征。  相似文献   

7.
Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(Lys(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Ala(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC))-tRNA(Val(UAC))-tRNA(Ala(UGC)) and tRNA(Glu(UUC))-tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.  相似文献   

8.
Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNAGlu(UUC), tRNALys(UUU), tRNAVal(UAC), and tRNAAla(GGC). Five amplicons contained tRNAGlu(UUC) combined with two additional tRNA genes, including tRNALys(UUU), tRNAVal(UAC), or tRNAAla(UGC). Five amplicons contained tRNAIle(GAU) and tRNAAla(UGC). Two amplicons contained tRNAGlu(UUC) and tRNAAla(UGC). Two different isoacceptor tRNAAla genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNAGlu(UUC)-tRNAVal(UAC)-tRNAAla(UGC) and tRNAGlu(UUC)-tRNAAla(UGC) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.  相似文献   

9.
We report here the isolation and characterization of a cotyledon-specific albino locus of Arabidopsis, WHITE COTYLEDONS (WCO). This recessive mutation in the WCO locus, located on the top of Chromosome 1, results in albino cotyledons but green true leaves. An accumulation profile of chlorophylls and ultrastructure of chloroplasts indicate that WCO is necessary for development of functional chloroplasts in cotyledons but is dispensable in true leaves. This was further supported by the fact that the mutants request feeding of sucrose for their survival at the early seedling stage where true leaves have not emerged, but the mutants which have developed true leaves are able to grow autotrophically without sucrose supplementation. The wco mutants accumulate low levels of chloroplast mRNA encoding photosynthesis-related proteins and have a specific defect in 16S rRNA maturation in a cotyledon-specific manner. Although wco mutants exhibited abnormal chloroplasts and chloroplast gene expression in cotyledons, nuclear genes for photosynthetic components are expressed at similar levels to those found in wild-type siblings. This lack of suppression of the nuclear genes is not due to a defect in the signaling of the so-called "plastid factor" to the nucleus since normal suppression of the nuclear genes was observed in response to the photo-oxidative damage due to norflurazon application.  相似文献   

10.
16S rRNA from seven different Vibrio anguillarum strains was partially sequenced and compared. From this sequence information we could design a 25-base-long oligonucleotide and use it as a specific probe for identification of V. anguillarum. This was determined by RNA-DNA colony hybridization and slot-blot hybridization. Strong, specific hybridization to the probe was observed for all V. anguillarum strains tested. Furthermore, no cross-hybridization could be seen against five other bacterial species. The detection limit was 5 x 10(3) bacteria per ml. It was even possible to detect V. anguillarum, by slot-blot hybridization, directly in a homogenized kidney from a fish that had died of vibriosis. The partial sequence information revealed small but significant differences between strains of the same species. These sequence differences are sufficiently significant to allow serotyping on the RNA level. Comparing strains of different serotypes revealed a 10-base and an 11-base difference in V. anguillarum serotypes O8 and O9, respectively, in a 122-base partial sequence.  相似文献   

11.
Amplification of the gene encoding 23S rRNA of Plesiomonas shigelloides by polymerase chain reaction (PCR), with primers complementary to conserved regions of 16S and the 3' end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria. The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in a further two clones. In one the sequence of a single tRNA(Glu) was found which was absent from the other two. This variation in sequence suggests that the different clones may be derived from different ribosomal RNA operons.  相似文献   

12.
16S rRNA from seven different Vibrio anguillarum strains was partially sequenced and compared. From this sequence information we could design a 25-base-long oligonucleotide and use it as a specific probe for identification of V. anguillarum. This was determined by RNA-DNA colony hybridization and slot-blot hybridization. Strong, specific hybridization to the probe was observed for all V. anguillarum strains tested. Furthermore, no cross-hybridization could be seen against five other bacterial species. The detection limit was 5 x 10(3) bacteria per ml. It was even possible to detect V. anguillarum, by slot-blot hybridization, directly in a homogenized kidney from a fish that had died of vibriosis. The partial sequence information revealed small but significant differences between strains of the same species. These sequence differences are sufficiently significant to allow serotyping on the RNA level. Comparing strains of different serotypes revealed a 10-base and an 11-base difference in V. anguillarum serotypes O8 and O9, respectively, in a 122-base partial sequence.  相似文献   

13.
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNAAla gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.  相似文献   

14.
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.  相似文献   

15.
Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.  相似文献   

16.
The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity.  相似文献   

17.
18.
Primary sequence of 3-terminal fragment of the mitochondrial 16S rRNA gene has been determined in 12 Drosophila species of the virilis group. The functionally important elements in secondary structure of the RNA product were defined. The region corresponding to the peptidyltransferase center has been localized. Variation of the 3'-terminal region of 16S rRNA gene has been described in 12 species of the virilis group. Phylogeny of the Drosophila virilis species group is discussed.  相似文献   

19.
20.
The phylogeny of the family Bovidae has been inferred from our data on the 12S and 16S rRNA mtDNA gene sequences and from the results of other authors. A considerable (2460 bp) length of the analyzed fragments of these conserved genes and the use of different methods of cladogram construction allowed us to verify the systematic position of the genera Saiga, Pantholops, Procapra, and Oreamnos. Saigas were shown to be phylogenetically far closer to gazelles than black-tailed gazelles and pygmy antelopes. In general, the genetic analysis data are in agreement with the results of morphological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号