首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using immunofluorescence confocal laser scanning microscopy, immunogold transmission electron microscopy and gas chromatography--mass spectrometry, we demonstrated the presence of 3-hydroxy fatty acids in Cryptococcus neoformans. Our results suggest that these oxylipins accumulate in capsules where they are released as hydrophobic droplets through tubular protuberances into the surrounding medium.  相似文献   

2.
Using a well tested antibody specific for 3-hydroxy oxylipins, we mapped the presence of these oxylipins in selected Cryptococcus (Filobasidiella) species. Immunofluorescence microscopy studies revealed that these compounds are deposited on cell wall surfaces, appendages, and collarettes. In vitro studies revealed that growth of Cryptococcus species was inhibited by acetylsalicylic acid (which is known to inhibit mitochondrial function, including the production of 3-hydroxy oxylipins) at concentrations as low as 1 mmol/L. The results suggest that acetylsalicylic acid is effective in controlling the growth of tested pathogens, probably by targeting their mitochondria. This study further expands the known function of this anti-inflammatory drug as anti-fungal agent.  相似文献   

3.
Interesting distribution patterns of acetylsalicylic acid (ASA, aspirin) sensitive 3-hydroxy (OH) oxylipins were previously reported in some representatives of the yeast genus Eremothecium—an important group of plant pathogens. Using immunofluorescence microscopy and 3-OH oxylipin specific antibodies in this study, we were able to map the presence of these compounds also in other Eremothecium species. In Eremothecium cymbalariae, these oxylipins were found to cover mostly the spiky tips of narrowly triangular ascospores while in Eremothecium gossypii, oxylipins covered the whole spindle-shaped ascospore with terminal appendages. The presence of these oxylipins was confirmed by chemical analysis. When ASA, a 3-OH oxylipin inhibitor, was added to these yeasts in increasing concentrations, the sexual stage was found to be the most sensitive. Our results suggest that 3-OH oxylipins, produced by mitochondria through incomplete β-oxidation, are associated with the development of the sexual stages in both yeasts. Strikingly, preliminary studies on yeast growth suggest that yeasts, characterized by mainly an aerobic respiration rather than a fermentative pathway, are more sensitive to ASA than yeasts characterized by both pathways. These data further support the role of mitochondria in sexual as well as asexual reproduction of yeasts and its role to serve as a target for ASA antifungal action.  相似文献   

4.
The presence of aspirin-sensitive 3-hydroxy fatty acids (i.e. 3-OH oxylipins) in yeasts was first reported in the early 1990s. Since then, these oxidized fatty acids have been found to be widely distributed in yeasts. 3-OH oxylipins may: (1) have potent biological activity in mammalian cells; (2) act as antifungals; and (3) assist during forced spore release from enclosed sexual cells (asci). A link between 3-OH oxylipin production, mitochondria and aspirin sensitivity exists. Research suggests that: (1) 3-OH oxylipins in some yeasts are probably also produced by mitochondria through incomplete beta-oxidation; (2) aspirin inhibits mitochondrial beta-oxidation and 3-OH oxylipin production; (3) yeast sexual stages, which are probably more dependent on mitochondrial activity, are also characterized by higher 3-OH oxylipin levels as compared to asexual stages; (4) yeast sexual developmental stages as well as cell adherence/flocculation are more sensitive to aspirin than corresponding asexual growth stages; and (5) mitochondrion-dependent asexual yeast cells with a strict aerobic metabolism are more sensitive to aspirin than those that can also produce energy through an alternative anaerobic glycolytic fermentative pathway in which mitochondria are not involved. This review interprets a wide network of studies that reveal aspirin to be a novel antifungal.  相似文献   

5.
The capsule of Cryptococcus neoformans can undergo dramatic enlargement, a phenomenon associated with virulence. A prior study that used Ab to the capsule as a marker for older capsular material concluded that capsule growth involved the intermixing of new and old capsular material with displacement of older capsular polysaccharide towards the surface. Here we have revisited that question using complement (C), which binds to capsular polysaccharide covalently, and cannot redistribute by dissociation and binding at different sites. The experimental approach involved binding of C to cells with small capsules, inducing capsule growth, and following the location of C relative to the cell wall as the capsule enlarged. C remained close to the cell wall during capsule growth, indicating that capsule enlargement occurred by addition of new polysaccharide near the capsule edge. This conclusion was confirmed by an independent method that employed radioactive metabolic labelling of newly synthesized capsule with 3H-mannose followed by gradual capsular stripping with gamma-radiation. Capsule growth proceeded to a certain size, which was a function of cell size, and was not degraded when the cells were transferred to a non-inducing medium. During budding, an opening appeared in the capsule of the mother cell that permitted the nascent bud to separate. Scanning EM suggested that a physical separation formed between the capsules of the mother and daughter cells during budding, which may avoid mixture between both capsules. Our results indicate that C. neoformans capsular enlargement also occurs by apical growth and that budding results in capsular rearrangements.  相似文献   

6.
We previously implicated 3-hydroxy oxylipins and ascospore structure in ascospore release from enclosed asci. Using confocal laser scanning microscopy on cells stained with fluorescein-coupled, 3-hydroxy oxylipin-specific antibodies, we found that oxylipins are specifically associated with ascospores and not the vegetative cells or ascus wall of Ascoidea corymbosa. Using gas chromatography--mass spectrometry the oxylipin 3-hydroxy 17:0 could be identified. Here, we visualize for the first time the forced release of oxylipin-coated, hat-shaped ascospores from terminally torn asci, probably through turgor pressure. We suggest that oxylipin-coated, razor-sharp, hat-shaped ascospore brims may play a role in rupturing the ascus to affect release.  相似文献   

7.
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.  相似文献   

8.
Micromorphology of Cryptococcus neoformans   总被引:10,自引:3,他引:7  
Fine details of the internal and external morphology of Cryptococcus neoformans as seen in ultrathin sections are described and illustrated with electron micrographs. The capsule characteristic of this species contained microfibrils (30 to 40 A in diameter) that appeared to radiate from the cell wall and to coil and intertwine in various directions. These thin, uniformly structured, electron-dense filaments are believed to represent complex polysaccharide molecules. The internal morphology of C. neoformans was in many ways similar to that of yeasts studied by other authors. The cell was uninucleate with a single nucleolus. The nuclear envelope, a pair of unit membranes interrupted by pores, was typical of that found in eucaryotic organisms. Smooth endoplasmic reticulum, mitochondria, vacuoles, storage granules, and ribosomes were consistent features of the cytoplasm. In addition, C. neoformans presented membranous organelles derived from the plasma membrane and comparable to bacterial mesosomes and mitochondria of an annulate type.  相似文献   

9.
Eremothecium coryli is known to produce intriguing spindle-shaped ascospores with long and thin whip-like appendages. Here, ultra structural studies using scanning electron microscopy, indicate that these appendages serve to coil around themselves and around ascospores causing spore aggregation. Furthermore, using immunofluorescence confocal laser scanning microscopy it was found that hydrophobic 3-hydroxy oxylipins cover the surfaces of these ascospores. Using gas chromatography–mass spectrometry, only the oxylipin 3-hydroxy 9:1 (a monounsaturated fatty acid containing a hydroxyl group on carbon 3) could be identified. Sequential digital imaging suggests that oxylipin-coated spindle-shaped ascospores are released from enclosed asci probably by protruding through an already disintegrating ascus wall.  相似文献   

10.
Molecular architecture of the Cryptococcus neoformans capsule   总被引:4,自引:0,他引:4  
Many microbes are surrounded by phagocytosis-inhibiting capsules. We took advantage of the large size of the polysaccharide capsule of the pathogenic yeast Cryptococcus neoformans to examine capsular architecture and the relationship between molecular architecture and the interaction of the capsule with potentially opsonic serum proteins. Our experimental design used complementary approaches in which (i) assessment of permeability to macromolecules of different Stokes radii; (ii) determination of the binding of Fab fragments of anticapsular antibodies as a measure of matrix density; (iii) capsular deconstruction by treatment with dimethyl sulphoxide; and (iv) evaluation of capsule plasticity, were used to probe the molecular structure of the capsule. The results showed that the capsule is a matrix with a variable porosity that increases with distance from the cell wall. A high density of the matrix at the capsule interior prevents penetration of large macromolecules to sites near the cell wall. In contrast, the capsular edge that is the interface with phagocytes presents capsular polysaccharide in a very low density that exhibits considerable plasticity and permeability to macromolecules. Notably, the capsule of yeast cells harvested from infected tissue showed a greater matrix density than yeast cells grown in vitro under capsule induction conditions.  相似文献   

11.
目的探讨快速获取高质量的新生隐球菌总RNA的实验方法。方法选取新生隐球菌的荚膜株、荚膜缺陷株,分别设计采用4种方法提取总RNA:酸洗玻璃珠法、液氮研磨法、异硫氰酸胍一步法、冷酸洗玻璃珠联合Yeast RNA kit法。用紫外线分光光度计测量其OD260、OD280的值,并且进行琼脂糖凝胶电泳,同时应用定量PCR法鉴定RNA质量。结果酸洗玻璃珠法、液氮研磨法、异硫氰酸胍一步法、冷酸洗玻璃珠联合Yeast RNA kit法的RNA产量分别为0.2μg/105细胞、0.4μg/105细胞、0.1μg/105细胞、0.6μg/105细胞。结论冷酸洗玻璃珠联合Yeast RNA kit法提取的RNA均一性和完整性最好,是简便、快捷地提取具有荚膜和细胞壁双重屏障的新生隐球菌RNA的理想方法。  相似文献   

12.
The distribution of 3-hydroxy oxylipins in Saturnispora saitoi was mapped using immunofluorescence microscopy. Fluorescence was observed on aggregating ascospores, indicating the presence of 3-hydroxy oxylipins on the surface or between ascospores. The oxylipin was identified as 3-hydroxy 9:1 using gas chromatography mass spectrometry. Furthermore, ultrastructural studies using scanning and transmission electron microscopy on ascospores revealed a clear equatorial ledge surrounding oval-shaped ascospores.  相似文献   

13.
There is a sufficient body of work documenting the distribution of 3-hydroxy oxylipins in microbes. However, there is limited information on the role of these compounds in microbial pathogenesis. When derived from mammalian cells, these compounds regulate patho-biological processes, thus an understanding of 3-hydroxy oxylipin function and metabolism could prove important in shedding light on how these compounds mediate cellular pathology and physiology. This could present 3-hydroxy oxylipin biosynthetic pathways as targets for drug development. In this minireview, we interrogate the relevant yeast and bacterial 3-hydroxy oxylipin literature in order to appreciate how these compounds may influence the inflammatory response leading to disease development.  相似文献   

14.
As previously found in various members of the Mucorales, 3-hydroxy oxylipins in Mucor genevensis are associated with the sporangia, i.e. mainly the columella structure and between aggregating sporangiospores. To determine if this phenomenon is also true in distantly related members, the mucoralean fungus Pilobolus was examined. This fungus is characterized by relatively large sub sporangial-columella structures which actively eject sporangia in a sticky liquid for attachment onto herbage surrounding its growth medium – in this case horse dung. Strikingly, this fungus produced a novel oxylipin i.e. a 3-hydroxy monounsaturated fatty acid, possibly a nonenoic acid, which is mainly associated with the sub sporangial-columella structure and aggregating sporangiospores. The specificity of the antibody against 3-hydroxy oxylipins used in immunofluorescence mapping of the mucoralean fungi, was further confirmed in the yeast, Saccharomycopsis malanga which produces 3-hydroxy palmitate in crystal form. These crystals occur between aggregating yeast cells. On the basis of the available data, we hypothesize that 3-hydroxy oxylipins probably function as adhesives, attaching fungal cells to each other or to other surfaces through entropic based hydrophobic forces and/or hydrogen bonds.  相似文献   

15.
Cryptococcus neoformans capsular polysaccharide is composed of at least two components, glucuronoxylomannan (GXM) and galactoxylomannans (GalXM). Although GXM has been extensively studied, little is known about the location of GalXM in the C. neoformans capsule, in part because there are no serological reagents specific to this antigen. To circumvent the poor immunogenicity of GalXM, this antigen was conjugated to protective antigen from Bacillus anthracis as a protein carrier. The resulting conjugate elicited antibodies that reacted with GalXM in mice and yielded an immune serum that proved useful for studying GalXM in the polysaccharide capsule. In acapsular cells, immune serum localized GalXM to the cell wall. In capsulated cells, immune serum localized GalXM to discrete pockets near the capsule edge. GalXM was abundant on the nascent capsules of budding daughter cells. The constituent sugars of GalXM were found in vesicle fractions consistent with vesicular transport for this polysaccharide. In addition, we generated a single-chain fraction variable fragment antibody with specificity to oxidized carbohydrates that also produced punctate immunofluorescence on encapsulated cells that partially colocalized with GalXM. The results are interpreted to mean that GalXM is a transient component of the polysaccharide capsule of mature cells during the process of secretion. Hence, the function of GalXM appears to be more consistent with that of an exopolysaccharide than a structural component of the cryptococcal capsule.  相似文献   

16.
The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans is an important virulence factor, but relatively little is known about its architecture. We applied a combination of radiological, chemical, and serological methods to investigate the structure of this polysaccharide capsule. Exposure of C. neoformans cells to gamma radiation, dimethyl sulfoxide, or radiolabeled monoclonal antibody removed a significant part of the capsule. Short intervals of gamma irradiation removed the outer portion of the cryptococcal capsule without killing cells, which could subsequently repair their capsules. Survival analysis of irradiated wild-type, acapsular mutant, and complemented mutant strains demonstrated that the capsule contributed to radioprotection and had a linear attenuation coefficient higher than that of lead. The capsule portions remaining after dimethyl sulfoxide or gamma radiation treatment were comparable in size, 65 to 66 microm3, and retained immunoreactivity for a monoclonal antibody to glucuronoxylomannan. Simultaneous or sequential treatment of the cells with dimethyl sulfoxide and radiation removed the remaining capsule so that it was not visible by light microscopy. The capsule could be protected against radiation by either of the free radical scavengers ascorbic acid and sorbitol. Sugar composition analysis of polysaccharide removed from the outer and inner parts of the capsule revealed significant differences in glucuronic acid and xylose molar ratios, implying differences in the chemical structure of the constituent polysaccharides. Our results provide compelling evidence for the existence of two zones in the C. neoformans capsule that differ in susceptibility to dimethyl sulfoxide and radiation and, possibly, in packing and composition.  相似文献   

17.
Forty-one strains of Cryptococcus neoformans were examined after 3 days growth on a fresh and aged medium at pH 5 & pH 7 for comparison of capsule formation. Over one-half of the strains did not form visible capsules on aged medium at pH 5. Serotypes and source of isolation did not correlate with ability or inability to form capsules. Growth of C. neoformans in the nonencapsulated state makes it possible to culture many strains of C. neoformans in the form that more closely simulates the true infectious particles.  相似文献   

18.
The pathogenic yeast Cryptococcus neoformans is distinguished by an extensive polysaccharide capsule, which impedes host defences and is absolutely required for fungal virulence. Despite the biological importance of the capsule, nothing is known about how it is assembled. Substantial capsule growth occurs in two distinct situations relevant to cryptococcal pathogenesis: formation of new buds and induction of capsule on mature cells. We developed pulse-chase protocols to examine these events in a dynamic way using a variety of microscopy techniques. We show that the capsule overlying buds is newly synthesized and differs physically from the corresponding parental material. New capsule formed by mature cells upon induction of synthesis is added at the inner aspect of the existing structure, displacing pre-existing material outwards. Surprisingly, new polysaccharide material is also deposited throughout the capsule, yielding a progressively denser structure. These results yield the first model of capsule synthesis and open new lines of investigation into the underlying mechanisms.  相似文献   

19.
The capsular swelling or quellung reaction was reported almost 100 years ago and described the effect of Abs on the appearance of microbial capsules. Despite widespread use to assess Ab binding to capsules, relatively little is known as to the mechanism of this effect or its biological consequences. The fungus Cryptococcus neoformans is an attractive system to study capsule reactions because it has a large polysaccharide capsule that is readily visible by light microscopy. When viewed by differential interference contrast microscopy, binding of mAb to C. neoformans cells produced two distinct capsular reactions that depended on the Ab epitope specificity and the yeast serotype. In the first pattern, termed "rim," the capsule appears transparent with a highly refractive outer edge. In the second pattern, termed "puffy," the capsule appears opaque and lacks a highly refractive outer rim. mAbs that bind with a rim pattern suppress the overall rate of C3 deposition on the yeast via the classical and alternative complement pathways. In contrast, mAbs that bind with a puffy pattern do not affect C3 deposition. Protective and nonprotective IgM mAbs produce rim and puffy patterns, respectively. These results indicate that: 1) capsule reactions are a consequence of Ab-induced changes in capsular refractive index; 2) the type of capsule reaction depends on the Ab specificity; and 3) Ab-induced changes in refractive index correlate with biological activities important for host defense against C. neoformans. Our results provide the first evidence associating distinct capsule reaction patterns with Ab biological activity.  相似文献   

20.
An antifungal substance produced by Paenibacillus brasilensis strain Sa3 was preliminary characterized and showed to be stable after treatment with different enzymes and organic solvents and at a wide range of pH, and presented a molecular weight between 3 and 10 kDa. In vitro antagonism of this strain towards Cryptococcus neoformans was investigated by optical and electronic microscopic analyses and a fungicidal effect on C. neoformans was observed. Ultrastructural analysis showed intense changes on the fungus when it was paired cultured with strain Sa3, mainly the detachment of the capsule from the cell wall and the presence of altered organelles in the cytoplasm. This novel antifungal substance produced by P. brasilensis Sa3 may represent a new insight in antifungal therapy mainly against emergent fungi. Also, prospective studies on rhizobacteria of plants as Kalanchoe brasiliensis may offer a potential source for the discovery of bioactive compounds with medical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号