首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major neutral glycosphingolipids (GSLs) of High Five insect cells have been extracted, purified, and characterized. It was anticipated that GSLs from High Five cells would follow the arthro-series pathway, known to be expressed by both insects and nematodes at least through the common tetraglycosylceramide (Glcbeta1Cer --> Manbeta4Glcbeta1Cer [MacCer] --> GlcNAcbeta3Manbeta4Glcbeta1Cer [At(3)Cer] --> GalNAcbeta4- GlcNAcbeta3Manbeta4Glcbeta1Cer [At(4)Cer]). Surprisingly, the structures of the major neutral High Five GSLs already diverge from the arthro-series pathway at the level of the triglycosylceramide. Studies by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) showed the structure of the predominant High Five triglycosylceramide to be Galbeta3Manbeta4Glcbeta1Cer, whereas the predominant tetraglycosylceramide was characterized as GalNAcalpha4Galbeta3Manbeta4- Glcbeta1Cer. Both of these structures are novel products for any cell or organism so far studied. The GalNAcalpha4 and Galbeta3 units are found in insect GSLs, but always as the fifth and sixth residues linked to GalNAcbeta4 in the arthro-series penta- and hexaglycosylceramide structures (At(5)Cer and At(6)Cer, respectively). The structure of the High Five tetraglycosylceramide thus requires a reversal of the usual order of action of the glycosyltransferases adding the GalNAcalpha4 and Galbeta3 residues in dipteran GSL biosynthesis and implies the existence of an insect Galbeta3-T capable of using Manbeta4Glcbeta1Cer as a substrate with high efficiency. The results demonstrate the potential appearance of unexpected glycoconjugate biosynthetic products even in widely used but unexamined systems, as well as a potential for core switching based on MacCer, as observed in mammalian cells based on the common LacCer intermediate.  相似文献   

2.
Two fractions of a major ganglioside from the kidney of the pacific salmon, Oncorhynchus keta, were eluted from a DEAE-Sephadex column in the monosialosyl fraction. The faster moving ganglioside (X1) on TLC was separated from the slower moving one (X2) by HPLC using a silica beads column. By methylation analysis, chemical and enzymatic degradation, reaction with monoclonal antibodies, LSIMS, and (1)H-NMR spectroscopy, X1 was determined to be a monosialosyl ganglioside belonging to the ganglio-series with a unique Fucalpha1-3GalNAc linkage at the nonreducing terminal: Fucalpha1-3GalNAcbeta1-3Galbeta1-3GalNAcbeta1-4[ NeuAcalpha2-3]Galbeta 1-4Glcbeta1-1Cer. Analysis of the lipophilic moiety indicated predominance of 24:1 fatty acid in combination with sphingenine. X2 was found to have a glycon structure identical to X1. The ceramide of X2 consisted predominantly of saturated fatty acids (18:0 and 16:0). The tissue concentrations of X1 and X2 in kidney were 3.7 and 2.8 nmol/g, respectively.  相似文献   

3.
Abstract: Our studies of bovine brain neutral glycosphingolipids (Ngsls) have revealed the presence of several short-chain (containing -CHO 1–4) and previously uncharacterized long-chain (−CHO > 4–5) Ngsls. We reported the structural characterization of brain GgOse4Cer (GA1) and have now purified another brain Ngsl to homogeneity. The purified Ngsl migrated close to standard GgOse4Cer and nLcOse5Cer on a TLC plate employing two different solvent systems. The carbohydrate molar composition indicated the presence of Gal/Glc/GalNAc in a ratio of 2.8:1.0:0.9. Five permethylated alditol acetate peaks were characterized as 2,3,4,6-OMe4Gal, 2,4,6-OMe3Gal, 2,3,6-OMe3Gal, 2,3,6-OMe3Glc, and 4,6-OMe2GalNAcMe by gas chromatography-mass spectrometry. The anomeric carbohydrate sequence has been determined by specific exoglycosidase digestion. Six-hundred megahertz 1H NMR spectroscopy of the oligosaccharide released by ceramide glycanase hydrolysis confirmed the structure of the Ngsl as Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glc\1-1Cer or IV3GalGbOse4Cer. Using the immunooverlay technique with anti-stage-specific embryonic antigen 3 antibody, it was found in bovine, rat, and normal adult human brain and bovine myelin, but not in human or rat myelin.  相似文献   

4.
The use of bovine brain has been prohibited in many countries because of the world-wide prevalence of mad cow disease, and thus porcine brain is expected to be a new source for the preparation of gangliosides. Here, we report the presence of a ganglioside in porcine brain which is strongly resistant to hydrolysis by endoglycoceramidase, an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. Five major gangliosides (designated PBG-1, 2, 3, 4, 5) were extracted from porcine brain by Folch's partition, followed by mild alkaline hydrolysis and PBA column chromatography. We found that PBG-2, but not the others, was strongly resistant to hydrolysis by the enzyme. After the purification of PBG-2 with Q-Sepharose, Silica gel 60 and Prosep-PB chromatographies, the structure of PBG-2 was determined by GC, GC-MS, FAB-MS and NMR spectroscopy as Fucalpha1-2Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer (fucosyl-GM1a). The ceramide was mainly composed of C18:0 and C20:0 fatty acids and d18:1 and d20:1 sphingoid bases. The apparent kcat/Km for fucosyl-GM1a was found to be 30 times lower than that for GM1a, indicating that terminal fucosylation makes GM1a resistant to hydrolysis by the enzyme. This report indicates the usefulness of endoglycoceramidase to prepare fucosyl-GM1a from porcine brain.  相似文献   

5.
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.  相似文献   

6.
A novel uronic acid-containing glycosphingolipid (UGL-1) was isolated from the ascidian Halocynthia roretzi. UGL-1 was prepared from chloroform-methanol extracts and purified by the use of successive column chromatography on DEAE-Sephadex, Florisil, and Iatrobeads. Chemical structural analysis was performed using methylation analysis, gas chromatography, gas chromatography-mass spectrometry, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry, and 1H-NMR spectra. The chemical structure of UGL-1 was determined to be a glucuronic acid-containing glycosphingolipid, Galbeta1-4(Fucalpha1-3)GlcAbeta1-1Cer. The ceramide component was composed of C16:0 and C18:0 acids and C16-, C17-, and C18-phytosphingosines as major components.  相似文献   

7.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

8.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

9.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

10.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

11.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4Glc) and isoglobotetraose (GalNAcbeta1-->3Galalpha1-->3Galbeta1-->4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant beta-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

12.
We recently discovered a novel alpha-N-acetylgalactosaminyltransferase in fetal bovine serum (Kitagawa et al., J. Biol. Chem., 270, 22190-22195, 1995) and also in mouse mast cytoma cells (Lidholt et al., Glycoconjugate J., 14, 737-742, 1997), which catalyzed the transfer of an alpha-GalNAc residue to the linkage tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, derived from proteoglycans. In this study, we characterized this enzyme using a preparation obtained from the serum-free culture medium of a human sarcoma (malignant fibrous histiocytoma) cell line by phenyl-Sepharose chromatography. Structural characterization by1H NMR spectroscopy of the reaction product using the linkage tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, as a substrate demonstrated that the enzyme was a UDP-GalNAc:GlcAbeta1-R alpha1,4-N -acetylgalactosaminyltransferase. This is the first identification of an alpha1,4-N-acetylgalactosaminyltransferase. Using N -acetylchondrosine GlcAbeta1-3GalNAc as an alternative substrate, the enzyme required divalent cations for the transferase reaction, with maximal activity at 20 mM Mn2+and exhibited a dual optimum at pH 6.5 and pH 7.4 depending upon the buffers used, with the highest activity in a 50 mM 2-( N -morpholino)ethanesulfonic acid buffer at pH 6.5. The apparent Km values obtained for N -acetylchondrosine, the linkage tetrasaccharide-serine, and UDP-GalNAc were 1060 microM, 188 microM, and 27 microM, respectively. This suggested that the linkage tetrasaccharide-serine was a good acceptor substrate for the enzyme. In addition, the enzyme utilized glucuronylneolactotetraosylceramide GlcAbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcbeta1-1Cer but not sulfoglucuronylneolactotetraosylceramide GlcA(3-O -sulfate)beta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Gl cbeta1-1Cer as acceptor substrates. The possibility of involvement of this enzyme in the biosynthesis of glycosaminoglycan as well as other GlcA-containing glycoconjugates is discussed.  相似文献   

13.
NeuGc alpha 2-6Glc beta 1-1Cer (M5 ganglioside) and HSO3-8NeuGc alpha 2-6Glc beta 1-1Cer (T1 ganglioside) were purified by column chromatographies with DEAE-Sephadex A-25 and silicic acid from the eggs of the sea urchin, Anthocidaris crassispina. Their chemical structures were determined by gas-liquid chromatography, methylation analysis, enzymatic hydrolysis, negative-ion fast atom bombardment mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Long-chain base compositions of both gangliosides were almost identical: all the long-chain bases were phytosphingosines, and C18-phytosphingosine accounted for more than 95% of them. Fatty acid compositions were also very similar: the main fatty acids were 22:1, 23:1, 24:1, and their 2-hydroxylated forms, and the 2-hydroxy fatty acids amounted to 65.3 and 74.3% of the fatty acids in M5 and T1 gangliosides, respectively. Proton nuclear magnetic resonance spectroscopic study revealed a downfield-shifted H8 proton signal of NeuGc residue in T1 ganglioside, in agreement with the presence of sulfate ester at the C8 position.  相似文献   

14.
Nontypeable Haemophilus influenzae (NTHI) are a major cause of human infections. We previously demonstrated high affinity and high specificity binding of NTHI to minor gangliosides of human respiratory (HEp-2) cells and macrophages, but not to brain gangliosides. We further identified the NTHI-binding ganglioside of human macrophages as alpha2,3-sialylosylparagloboside (IV3NeuAc-nLcOse4Cer, nLM1), which possesses a neolacto core structure that is absent in brain gangliosides. This supported a hypothesis that lacto/neolacto core carbohydrates are critical for NTHI-ganglioside binding. To investigate, we determined the core carbohydrate structure of NTHI-binding gangliosides of HEp-2 cells, through multiple approaches, including specific enzymatic degradation, mass spectral analysis and gas-liquid chromatography. Our analyses denote the following critical structural attributes of NTHI-binding gangliosides: (1) a conserved lacto/neolacto core structure; (2) requisite sialylation, which may be either internal or external, with alpha2,3 (human macrophages) or alpha2,6 (HEp-2 cells) anomeric linkages; (3) internalized galactose residues. Mass spectral and gas chromatographic analyses confirm that NTHI-binding gangliosides of HEp-2 cells possess lacto/neolacto carbohydrate cores and identify the structure of the major peak as NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-1Cer (alpha2,6-sialosylparagloboside, nLM1). Collectively, our studies denote NTHI-binding gangliosides as lacto/neolacto series structures.  相似文献   

15.
16.
We have determined that the production of a metastasis-associated neutral glycosphingolipid, isogloboside (iGb(4)Cer, GalNAcbeta1-3Galalpha1-3Galbeta1-4Glcbeta1-O-ceramide) is associated with the loss of G(M3) synthase activity. Assays for neutral glycosphingolipid-forming glycosyltransferases in cells producing various levels of iGb(4)Cer revealed no consistent differences that could account for the difference in iGb(4)Cer biosynthesis. However, comparison of the activity of G(M3) synthase in homogenates of these two cell types revealed that cells that did not synthesize iGb(4)Cer had activity significantly greater than that of cells possessing this antigen. Furthermore, somatic cell hybrids generated using clones of the iGb(4)Cer -producing and nonproducing cell lines lacked iGb(4)Cer while possessing high levels of G(M3) synthase activity. When iGb(4)Cer-producing cells were transfected with a G(M3) synthase expression vector, all of the resultant clones were negative for iGb(4)Cer production. The results of these studies clearly show that the presence of G(M3) synthase prevents the formation of iGb(4)Cer in these cells.  相似文献   

17.
Megalin (gp 330) is a large cell surface receptor expressed on the apical surfaces of epithelial tissues, that mediates the binding and internalization of a number of structurally and functionally distinct ligands. In this paper we report the first detailed structural characterization of megalin-derived oligosaccharides. Using strategies based on mass spectrometric analysis, we have defined the structures of the N-glycans of megalin. The results reveal that megalin glycoprotein is heterogeneously glycosylated. The major N-glycans identified belong to the following two classes: high mannose structures and complex type structures, with complex structures being more abundant than high mannose structures. The major nonreducing epitopes in the complex-type glycans are: GlcNAc, Galbeta1-4GlcNAc (LacNAc), NeuAcalpha2-6Galbeta1-4GlcNAc (sialylated LacNAc), GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4GlcNAc (Sd(a)) and Galalpha1-3Galbeta1-4GlcNAc. Most complex structures are characterized by the presence of (alpha1,6)-core fucosylation and the presence of a bisecting GlcNAc residue.  相似文献   

18.
Based on sequence homology with the previously cloned human cerebroside sulfotransferase (CST) cDNA, a novel sulfotransferase was cloned by screening a human fetal brain cDNA library. The novel sulfotransferase gene was present on human chromosome 11q13; the location was different from human CST and from that of the recently cloned human beta-Gal 3'-sulfotransferase (GP3ST). The isolated cDNA contained an open reading frame that encoded a predicted protein of 431 amino acid residues with type II transmembrane topology. The amino acid sequence showed 33% identity with that of human CST and 38% with that of human GP3ST. The recombinant enzyme expressed in Chinese hamster ovary cells catalyzed transfer of sulfate to position 3 of non-reducing beta-galactosyl residues in Galbeta1-4GlcNAc. Type 2 chains served as good acceptors, whereas type 1 chains served as poor acceptors, and intermediate activity was found toward Galbeta1-3GalNAc. Therefore, the substrate specificity was different from that of GP3ST. CST activity was not detected in the newly cloned enzyme. Northern blotting analysis showed that the sulfotransferase mRNA was strongly expressed in the thyroid and moderately expressed in the brain, heart, kidney, and spinal cord. Co-transfection of the enzyme cDNA and fucosyltransferase III into COS-7 cells resulted in expression of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc and a small amount of (SO(4)-3)Galbeta1-3(Fucalpha1-4)GlcNAc. These results indicated that the newly cloned enzyme is a novel Gal-3-O-sulfotransferase and is involved in biosynthesis of the (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc structure.  相似文献   

19.
Glucosylceramide (Glc beta 1-1Cer) and a novel ceramide trihexoside (Gal beta 1-6Gal beta 1-6Glc beta 1-1Cer) were purified from the eggs of the sea urchin, Hemicentrotus pulcherrimus. Their chemical structures were determined by gas-liquid chromatography, methylation analysis, chromic acid oxidation, enzymatic hydrolysis, enzyme-linked immunosorbent assay, fast atom bombardment mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The ceramide trihexoside has a novel carbohydrate structure, and its core structure, Gal beta 1-6Glc, is also novel. The ceramide moieties of these glycolipids are almost identical. Two fatty acids, 22:1 and 22h:1, constitute more than 80% of the total acids. Long-chain bases are all phytosphingosine, approximately 90% of which is n-t18:0. The finding of melibiosylceramide (Gal alpha 1-6Glc beta 1-1Cer) from the eggs of another sea urchin species [Kubo, H. et al. (1988) J. Biochem. 104, 755-760] and the present finding of the novel ceramide trihexoside suggest that there are a variety of unique sugar structures in sea urchin glycosphingolipids.  相似文献   

20.
The GalNAcbeta1-4GlcNAc determinant (LdN) occurs in some human and bovine glycoconjugates and also in lower vertebrates and invertebrates. It has been found in unsubstituted as well as terminally substituted forms at the distal end of conjugated glycans, but it has not been reported previously at truly internal positions of polylactosamine chains. Here, we describe enzyme-assisted conversion of LdNbeta1-OR oligosaccharides into GlcNAcbeta1-3GalNAcbeta1-4GlcNAcbeta1-OR. The extension reactions, catalyzed by human serum, were modeled after analogous beta3-GlcNAc transfer processes that generate GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-OR. The newly synthesized GlcNAcbeta1-3GalNAc linkages were unambiguously identified by nuclear magnetic resonance data, including the appropriate long-range correlations in heteronuclear multiple bond correlation spectra. The novel GlcNAcbeta1-3'LdN determinant proved to be a functional acceptor for several mammalian glycosyltransferases, suggesting that human polylactosamines may contain internal LdN units in many distinct forms. The GlcNAcbeta1-3'LdN determinant was unusually resistant toward jackbean beta-N-acetylhexosaminidase; the slow degradation should lead to a convenient method for the search of putative internal LdN determinants in natural polylactosamine chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号