首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: This study explores basic physiological features and time relations of recovery of photosynthetic activity and CO2 uptake following rehydration of a desiccation-tolerant moss in relation to the full temporal sequence of cytological changes associated with recovery to the normal hydrated state. It seeks reconciliation of the apparently conflicting published physiological and cytological evidence on recovery from desiccation in bryophytes. METHODS: Observations were made of water-stress responses and recovery using infrared gas analysis and modulated chlorophyll fluorescence, and of structural and ultrastructural changes by light and transmission electron microscopy. KEY RESULTS: Net CO2 uptake fell to zero at approx. 40 % RWC, paralleling the fluorescence parameter PhiPSII at 200 micromol m(-2) s(-1) PPFD. On re-wetting the moss after 9-18 d desiccation, the initially negative net CO2 uptake became positive 10-30 min after re-wetting, restoring a net carbon balance after approx. 0.3-1 h. The parameter Fv/Fm reached approx. 80 % of its pre-desiccation value within approx. 10 min of re-wetting. In the presence of the protein-synthesis inhibitors chloramphenicol and cycloheximide, recovery of Fv/Fm (and CO2 exchange) proceeded normally in the dark, but declined rapidly in the light. Though initial recovery was rapid, both net CO2 uptake and Fv/Fm required approx. 24 h to recover completely to pre-desiccation values. The fixation protocols produced neither swelling of tissues nor plasmolysis. Thylakoids, grana and mitochondrial cristae remained intact throughout the drying-re-wetting cycle, but there were striking changes in the form of the organelles, especially the chloroplasts, which had prominent lobes and lamellar extensions in the normally hydrated state, but rounded off when desiccated, returning slowly to their normal state within approx. 24 h of re-wetting. Sub-cellular events during desiccation and re-wetting were generally similar to those seen in published data from the pteridophyte Selaginella lepidophylla. CONCLUSIONS: Initial recovery of respiration and photosynthesis (as of protein synthesis) is very rapid, and independent of protein synthesis, suggesting physical reactivation of systems conserved intact through desiccation and rehydration, but full recovery takes approx. 24 h. This is consistent with the cytological evidence, which shows the thylakoids and cristae remaining intact through the whole course of dehydration and rehydration. Substantial and co-ordinated changes in other cell components, which must affect spatial relationships of organelles and metabolic systems, return to normal on a time span similar to full recovery of photosynthesis. Comparison of the present data with recently published results suggests a significant role for the cytoskeleton in desiccation responses.  相似文献   

2.
BACKGROUND AND AIMS: Moss food-conducting cells (leptoids and specialized parenchyma cells) have a highly distinctive cytology characterized by a polarized cytoplasmic organization and longitudinal alignment of plastids, mitochondria, endoplasmic reticulum and vesicles along endoplasmic microtubules. Previous studies on the desiccation biology of mosses have focused almost exclusively on photosynthetic tissues; the effects of desiccation on food-conducting cells are unknown. Reported here is a cytological study of the effects of de- and rehydration on food-conducting cells in the desiccation-tolerant moss Polytrichum formosum aimed at exploring whether the remarkable subcellular organization of these cells is related to the ability of mosses to survive desiccation. METHODS: Shoots of Polytrichum formosum were dehydrated under natural conditions and prepared for transmission and scanning electron microscopy using both standard and anhydrous chemical fixation protocols. Replicate samples were then fixed at intervals over a 24-h period following rehydration in either water or in a 10 microM solution of the microtubule-disrupting drug oryzalin. KEY RESULTS: Desiccation causes dramatic changes; the endoplasmic microtubules disappear; the nucleus, mitochondria and plastids become rounded and the longitudinal alignment of the organelles is lost, though cytoplasmic polarity is in part retained. Prominent stacks of endoplasmic reticulum, typical of the hydrated condition, are replaced with membranous tubules arranged at right angles to the main cellular axis. The internal cytoplasm becomes filled with small vacuoles and the plasmalemma forms labyrinthine tubular extensions outlining newly deposited ingrowths of cell wall material. Whereas plasmodesmata in meristematic cells at the shoot apex and in stem parenchyma cells appear to be unaffected by dehydration, those in leptoids become plugged with electron-opaque material. Starch deposits in parenchyma cells adjoining leptoids are depleted in desiccated plants. Rehydration sees complete reestablishment over a 12- to 24-h period of the cytology seen in the control plants. Oryzalin effectively prevents leptoid recovery. CONCLUSIONS: The results point to a key role of the microtubular cytoskeleton in the rapid re-establishment of the elaborate cytoplasmic architecture of leptoids during rehydration. The reassembly of the endoplasmic microtubule system appears to dictate the time frame for the recovery process. The failure of leptoids to recover normal cytology in the presence of oryzalin further underlines the key role of the microtubules in the control of leptoid cytological organization.  相似文献   

3.
The study of desiccation tolerance in bryophytes avoids thecomplications of higher-plant vascular systems and complex leaf structures, butremains a multifaceted problem. Some of the pertinent questions have at leastpartial analogues in seed biology – events during a drying-rewettingcyclewith processes in seed maturation and germination, and the gradual loss ofviability on prolonged desiccation, and the relation of this to intensity ofdesiccation and temperature, with parallel questions in seed storage. Pastresearch on bryophyte desiccation tolerance is briefly reviewed. Evidence ispresented from chlorophyll-fluorescence measurements and experiments withmetabolic inhibitors that recovery of photosynthesis in bryophytes followingdesiccation depends mainly on rapid reactivation of pre-existing structures andinvolves only limited de novo protein synthesis. Followinginitial recovery, protein synthesis is demonstrably essential to themaintenanceof photosynthetic function in the light, but the rate of maintenance turnoverinthe dark appears to be slow. Factors leading to long-term desiccation damagearediverse; indications are that desiccation tolerant species often survive bestinthe range –100 to –200 MPa.  相似文献   

4.
Background and Aims Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness.Methods Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot–sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot–sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed.Key Results The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation.Conclusions The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility.  相似文献   

5.
6.
7.
Hydrated thalli of the lichen Lobaria pulmonaria were either preconditioned to dim irradiance (DI, 5 μmol m−2 s−1) or medium irradiance (MI, 200 μmol m−2 s−1) for 6 h. After this 6 h period, the thalli were allowed to desiccate under the two respective irradiances. Thereafter, these dry lichens were exposed to high irradiance (HI, 1 000 μmol m−2 s−1) for 60 h. After this HI treatment, the maximal photochemical quantum yield (FV/FM) and the de-epoxidation state of xanthophyll cycle pigments (DEPS) were highest in thalli preconditioned to MI. Hence irradiance in the last hydrated period before sampling is significant for the physiological state of lichens. A standardized irradiance pre-treatment before start of experiments is recommended.  相似文献   

8.
In situ Fourier transform infrared spectroscopy (FTIR) was used in order to obtain more insights in the underlying protective mechanisms upon freezing and drying of ABA-treated tissues of the moss Physcomitrella patens. The effects of different treatments on the membrane phase behaviour, glassy state, and overall protein secondary structure were studied. We found that growth on ABA resulted in the accumulation of sucrose: up to 22% of the tissue on a dry weight basis, compared to only 3.7% in non-ABA-treated tissues. Sucrose functions as a protectant during freezing and drying, but accumulation of sucrose alone is not sufficient for survival. ABA-treated tissue survives a freeze–thaw cycle down to −80 °C only after addition of an additional cryoprotectant (DMSO). Survival correlates with preservation of membrane phase behaviour. We found that ABA-treated P. patens can survive slow but not rapid drying down to water contents as low as 0.02 g H2O per g DW. Rapidly and slowly dried ABA-treated tissues were found to have similar sugar compositions and glass transition temperatures. The average strength of hydrogen bonding in the cytoplasmic glassy matrix, however, was found to be increased upon slow drying. In addition, slowly dried tissues were found to have a higher relative proportion of α-helical structures compared to rapidly dried tissues.  相似文献   

9.
After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11–12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.Partially supported by Biomedical Sciences Support Grant RR07037.  相似文献   

10.
Yu Q  Zhang Y  Liu Y  Shi P 《Annals of botany》2004,93(4):435-441
BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content.  相似文献   

11.
A C3 monocot, Hordeum vulgare and C3 dicot, Vicia faba, were studied to evaluate the mechanism of inhibition of photosynthesis due to water stress. The net rate of CO2 fixation (A) and transpiration (E) were measured by gas exchange, while the true rate of O2 evolution (J O2) was calculated from chlorophyll fluorescence analysis through the stress cycle (10 to 11 days). With the development of water stress, the decrease in A was more pronounced than the decrease in J O2 resulting in an increased ratio of Photosystem II activity per CO2 fixed which is indicative of an increase in photorespiration due to a decrease in supply of CO2 to Rubisco. Analyses of changes in the J O2 A ratios versus that of CO2 limited photosynthesis in well watered plants, and RuBP pool/RuBP binding sites on Rubisco and RuBP activity, indicate a decreased supply of CO2 to Rubisco under both mild and severe stress is primarily responsible for the decrease in CO2 fixation. In the early stages of stress, the decrease in C i (intercellular CO2) due to stomatal closure can account for the decrease in photosynthesis. Under more severe stress, CO2 supply to Rubisco, calculated from analysis of electron flow and CO2 exchange, continued to decrease. However, C i, calculated from analysis of transpiration and CO2 exchange, either remained constant or increased which may be due to either a decrease in mesophyll conductance or an overestimation of C i by this method due to patchiness in conductance of CO2 to the intercellular space. When plants were rewatered after photosynthesis had dropped to 10–30% of the original rate, both species showed near full recovery within two to four days.Abbreviations A- net CO2 assimilation rate - A *- net CO2 assimilation rate plus dark respiration - ATP- adenosine triphosphate - CABP- carboxyarabinitol 1,5-bisphosphate - C a- ambient CO2 concentration - C c- CO2 concentration in the chloroplast - C i- intercellular CO2 concentration - E- transpiration rate - g m- mesophyll conductance - g s- stomatal conductance - J O2 true rate of O2 evolution - LSD- least significant difference - PPFD- photosynthetic photon flux density - PS II- Photosystem II - R n- dark respiration rate - Rubisco- ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP- ribulose 1,5-bisphosphate - RWC- relative water content - c- rate of carboxylation - o- rate of oxygenation - PSII- quantum yield of Photosystem II - - CO2 compensation point in the absence of R n - - water potential  相似文献   

12.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation. Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (P N), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, P N, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts of these leaves.  相似文献   

13.
Abscisic acid (ABA) has been postulated to play a role in the development of freezing tolerance during the cold acclimation process in higher plants, but its role in cold tolerance in tower land plants has not been elucidated. The moss Physcomitrella patens rapidly developed freezing tolerance when its protonemata were grown in a medium containing ABA, with dramatic changes in the LT50 value from -2 degrees C to over -10 degrees C. We examined physiological and morphological alterations in protonema cells caused by ABA treatment to elucidate early cellular events responsible for rapid enhancement of freezing tolerance. Microscopic observations revealed that ABA treatment for 1 day resulted in a dramatic alteration in the appearance of intracellular organelles. ABA-treated cells had slender chloroplasts, with a reduced amount of starch grains, in comparison with those of non-treated cells. The ABA-treated cells also had several segmented vacuoles while many of non-treated cells had one central vacuole. When frozen to -4 degrees C, freezing injury-associated ultrastructural changes such as formation of aparticulate domains and fracture-jump lesions were frequently observed in the plasma membrane of non-treated protonema cells but not in that of ABA-treated cells. The ABA treatment increased the osmotic concentration of the protonema cells, in correlation with accumulation of free soluble sugars. These results suggest that ABA-induced accumulation of soluble sugars, associated with morphological changes in organelles, mitigated freezing-induced structural damage in the plasma membrane, eventually leading to enhancement of freezing tolerance in the protonema cells.  相似文献   

14.
Proctor MC 《Annals of botany》2012,109(5):1019-1026

Background and Aims

Hymenophyllaceae (filmy ferns) are typically plants of shady, constantly moist habitats. They attain greatest species diversity and biomass in humid tropical montane forests and temperate hyperoceanic climates. This paper presents ecophysiological data bearing on their worldwide ecological niche space and its limits.

Methods

Chlorophyll fluorescence was used to monitor recovery in desiccation experiments, and for measurements of 95 % saturating irradiance [photosynthetic photon flux density (PPFD95 %)] of photosynthetic electron flow and other parameters, in the New Zealand Hymenophyllum sanguinolentum, and three species each of Hymenophyllum and Trichomanes from forests in Trinidad and Venezuela.

Key Results

Hymenophyllum sanguinolentum was comparable in desiccation tolerance and light responses with the European species. The more common species in the two tropical forests showed PPFD95 % >100 µmol m−2 s−1, and withstood moderate desiccation (–40 MPa) for several days. The four most shade-adapted species had PPFD95 % ≤51 µmol m−2 s−1, and were sensitive to even mild and brief desiccation (–22 MPa for 3 d).

Conclusions

Light and desiccation responses of filmy ferns can be seen as an integrated package. At low light and windspeed in humid forests, net radiation and saturation deficit are low, and diffusion resistance high. Water loss is slow and can be supported by modest conduction from the sub-stratum. With higher irradiance, selection pressure for desiccation tolerance increases progressively. With low light and high humidity, the filmy fern pattern of adaptation is probably optimal, and the vascular plant leaf with mesophyll and stomata offers no advantage in light capture, water economy or CO2 uptake. Trade-offs between light adaptation and desiccation tolerance, and between stem conduction and water absorption through the leaf surface, underlie adaptive radiation and niche differentiation of species within the family. Hymenophyllaceae are a rare example of an evolutionary shift of adaptive strategy from typical vascular plant adaptation to the poikilohydry most typical of bryophytes.  相似文献   

15.
Chlorophyll a fluorescence rise kinetics (from 50 μs to 1 s) were used to investigate the non-photochemical reduction of the plastoquinone (PQ) pool in osmotically broken spinach chloroplasts (Spinacia oleracea L.). Incubation of the chloroplasts in the presence of exogenous NADPH or NADH resulted in significant changes in the shape of the fluorescence transient reflecting an NAD(P)H-dependent accumulation of reduced PQ in the dark, with an extent depending on the concentration of NAD(P)H and the availability of oxygen; the dark reduction of the PQ pool was saturated at lower NAD(P)H concentrations and reached a higher level when the incubation took place under anaerobic conditions than when it occurred under aerobic conditions. Under both conditions NADPH was more effective than NADH in reducing PQ, however only at sub-saturating concentrations. Neither antimycin A nor rotenone were found to alter the effect of NAD(P)H. The addition of mercury chloride to the chloroplast suspension decreased the NAD(P)H-dependent dark reduction of the PQ pool, with the full inhibition requiring higher mercury concentrations under anaerobic than under aerobic conditions. This is the first time that this inhibitory role of mercury is reported for higher plants. The results demonstrate that in the dark the redox state of the PQ pool is regulated by the reduction of PQ via a mercury-sensitive NAD(P)H-PQ oxidoreductase and the reoxidation of reduced PQ by an O2-dependent pathway, thus providing additional evidence for the existence of a chlororespiratory electron transport chain in higher plant chloroplasts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

17.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

18.
The heat tolerance of wheat (Triticum aestivum L.) and radish (Raphanus sativus L. var. minor) cenoses exposed to elevated and damaging air temperatures (35°C for 20 h, 45°C for 7 h) under photoculture conditions at various levels of photosynthetically active radiation (PAR) was assessed by measuring characteristics of the slow induction curve of chlorophyll fluorescence at 682 and 734 nm and the CO2 exchange rate. Irrespective of the illumination level, the exposure of the cenoses to 35°C did not induce irreversible changes in the plant photosynthetic apparatus. The lowest extent of damage to wheat and radish cenoses exposed to 45°C was observed at 150 W/m2 of PAR, whereas the highest damage of the plants was observed at an illumination level that was close to the compensation point of the cenose photosynthesis (50–70 W/m2 of PAR at air temperature of 24°C). Viability index proved to be the most sensitive characteristic, compared to other characteristics, which were determined by measuring the slow phase of fluorescence induction at 682 and 734 nm. In the cenoses studied, the pattern of changes in the viability index in response to a stress factor was close to the changes in the photosynthetic rate.  相似文献   

19.
Reports in the 1970s from several laboratories revealed that the affinity of photosynthetic machinery for dissolved inorganic carbon (DIC) was greatly increased when unicellular green microalgae were transferred from high to low-CO2 conditions. This increase was due to the induction of carbonic anhydrase (CA) and the active transport of CO2 and/or HCO3 which increased the internal DIC concentration. The feature is referred to as the `CO2-concentrating mechanism (CCM)'. It was revealed that CA facilitates the supply of DIC from outside to inside the algal cells. It was also found that the active species of DIC absorbed by the algal cells and chloroplasts were CO2 and/or HCO3 , depending on the species. In the 1990s, gene technology started to throw light on the molecular aspects of CCM and identified the genes involved. The identification of the active HCO3 transporter, of the molecules functioning for the energization of cyanobacteria and of CAs with different cellular localizations in eukaryotes are examples of such successes. The first X-ray structural analysis of CA in a photosynthetic organism was carried out with a red alga. The results showed that the red alga possessed a homodimeric β-type of CA composed of two internally repeating structures. An increase in the CO2 concentration to several percent results in the loss of CCM and any further increase is often disadvantageous to cellular growth. It has recently been found that some microalgae and cyanobacteria can grow rapidly even under CO2 concentrations higher than 40%. Studies on the mechanism underlying the resistance to extremely high CO2 concentrations have indicated that only algae that can adopt the state transition in favor of PS I could adapt to and survive under such conditions. It was concluded that extra ATP produced by enhanced PS I cyclic electron flow is used as an energy source of H+-transport in extremely high-CO2 conditions. This same state transition has also been observed when high-CO2 cells were transferred to low CO2 conditions, indicating that ATP produced by cyclic electron transfer was necessary to accumulate DIC in low-CO2 conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as H2O2 content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub. The rate of photorespiration was estimated by combined measurement of gas exchange and Chl fluorescence. The rate of photorespiration increased with the increasing drought stress (DS). The ratio of carboxylation electron flow to oxygenation electron flow (Jc/Jo) and the maximal photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm) decreased with the increasing DS. Fv/Fm in isonicotinic acid hydrazide (INH)-sprayed plants was lower than that in normal plants under moderate DS, but no significant difference was observed under severe DS. H2O2 content in INH-sprayed plants was significantly lower than that in normal plants under severe DS. Taken together, photorespiration in R. soongorica consumed excess electrons and protected photosynthetic apparatus under moderate DS, whereas it accelerated H2O2 accumulation markedly and induced the leaf abscission under severe DS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号