首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the influence of the laccase activity of two white-rot fungi on the toxic effect of water-soluble substances from dry residues of olives (ADOR) on tomato plants. Pycnoporus cinnabarinus and Coriolopsis rigida decreased the phenol content of ADOR to 73% after 15 days. P. cinnabarinus and C. rigida produced laccase activity after 5 and 15 days, respectively, and the highest activity in both fungi was detected at 20 days. The treatment of ADOR with these white-rot fungi decreased the phytotoxicity of this residue on tomato plants. A close relationship was found between the amount of laccase produced, the decrease in phenol content of ADOR by the saprobic fungi, decrease of phytotoxicity of ADOR, and the increase in dry weight of tomato plants. These results show that phenol removal by the laccase activity of white-rot fungi can be important in the elimination of phytotoxic substances present in olive-mill dry residues.  相似文献   

2.
We studied the influence of saprophytic fungi on the toxic effect that the water-soluble substances in dry residues from olive (ADOR) have on the growth of plants. All saprophytic fungi were able to decrease the phytotoxicity of ADOR, although the toxicity of this residue did not decrease in the same way. Penicillium chrysogenum was able to reduce the toxicity of ADOR when this residue was applied at the highest dose of 15%. Fusarium lateritum, F. graminearum and Mucor racemosus were able to reduce the toxicity of ADOR when this residue was applied at the intermediate doses. However, F. oxysporum decreased the phytotoxicity of ADOR only when the residue was applied at the lowest dose of 2.5%. All saprophytic fungi tested produce endoglucanase, endopolymetylgalacturonase and endoxiloglucanase when grown in the presence of ADOR. A close relationship was found between the decrease in the phytotoxicity of ADOR and the amount of hydrolytic enzymes produced by the saprophytic fungi. These results shows that hydrolytic enzymes can be important in the degradation of phytotoxic substances present in olive mill dry residue.  相似文献   

3.
Fracchia  S.  Garcia-Romera  I.  Godeas  A.  Ocampo  J.A. 《Plant and Soil》2000,223(1-2):177-186
Effects of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal (AM) colonization and plant dry matter were studied in greenhouse and field experiments. Host plants: maize (Zea mays L.), sorghum (Sorghum vulgare L.), lettuce (Lactuca sativa L.), tomato (Lycopersicum esculentum L.), wheat (Triticum vulgare L), lentil (Ervum lens L.) and pea (Pisum sativum L.), the AM fungi: Glomus mosseae, G. fasciculatum, G. intraradices, G. clarum, and G. deserticola and the carriers for F. oxysporum inoculum: aqueous solution, thin agar slices, and pellets of agar and alginate were tested under greenhouse conditions. Greatest plant growth and AM colonization responses in sterilized and unsterilized soils were observed with pea, Glomus deserticola and sodium alginate pellets as the carrier for F. oxysporum inoculum. Under field conditions, adding F. oxysporum increased the survival of transplanted pea, possibly through a beneficial effect on AM fungi. Application of F. oxysporum increased shoot dry matter, N and P concentrations of pea and sorghum plants, and the level of AM colonization attained by indigenous or introduced AM fungi. These parameters were similar in plants inoculated with either G. deserticola or with the indigenous AM fungi. Application of the saprophytic fungus increased the number of propagules of AM fungi in field plots in which pea was grown, but this increase was not sufficient to increase AM colonization of sorghum after the pea crop. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The use of “alpeorujo” (dry olive residue) has been proposed as an organic amendment in order to enhance soil structure and to increase C storage in soils. The aim of this work is to study how aqueous alpeorujo (ADOR) extracts bioremediated with white-rot fungi and three representative phenolic acids present in this extract (protocatechuic, vanillic and caffeic acid) affect the growth of the arbuscular mychorrhizal fungus Rhizophagus custos in monoxenic culture. Our results show that ADOR decreased mycorrhization parameters; however, this negative effect ceased after ADOR bioremediation. Although protocatechuic and vanillic acids have drastic negative effects at high concentrations, these phenols enhance mycorrhization processes at low concentrations and caffeic acid negatively affects symbiosis at low concentrations. Finally, the capacity of root biomass to dissipate individual phenols was also estimated, in which mycorrhized roots improve phenol dissipation in the growth medium in the presence of different phenols. This study highlights the important role played by arbuscular mycorrhiza in protecting plants from phytotoxicity.  相似文献   

5.
The presence of high concentrations of arsenic (As) decreased the shoot and root dry weight, chlorophyll and P and Mg content of Eucalyptus globulus colonized with the arbuscular mycorrhizal (AM) fungi Glomus deserticola or G. claroideum, but these parameters were higher than in non-AM plants. As increased the percentage of AM length colonization and succinate dehydrogenase (SDH) activity in the root of E. globulus. Trichoderma harzianum, but not Trametes versicolor, increased the shoot and root dry weight, chlorophyll content, the percentage of AM root length colonization and SDH activity of E. globulus in presence of all As concentrations applied to soil when was inoculated together with G. claroideum. AM fungi increased shoot As and P concentration of E. globulus to higher level than the non-AM inoculated controls. The contribution of the AM and saprobe fungi to the translocation of As from root to shoot of E. globulus is discussed.  相似文献   

6.
Dry olive mill residue (DOR), the by-product of the two-phase extraction process, is very rich in organic matter and nutritionally relevant cations. For this reason, the agronomic use of this waste has been suggested although DOR exhibits significant phytotoxicity. The objective of this study was to investigate the impact of Paecilomyces farinosus on both organic matter modification and detoxification of this waste. Humification ratio in DOR colonized by the fungus for 20 weeks was increased by about 65% with respect to the abiotic control and humification index reached 0.38, a value that characterizes well-humified materials. High performance size-exclusion chromatography of humic acids from fungal cultures showed a marked increase in both weight-averaged and number-averaged molecular weights with respect to abiotic controls. Water-soluble phenols were reduced by 45% in 20-week-old P. farinosus cultures on DOR and mass-balance ultra-filtration showed that the relative abundance of the molecular weight fraction of phenols above 30 kDa increased from 31 to 72% suggesting the occurrence of polymerization. Experiments performed with alfalfa grown on soils containing 2.5% (w/w) of abiotic controls and fungal-treated DOR showed that phytotoxicity was totally suppressed in the waste that underwent fungal treatment.  相似文献   

7.
The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress.  相似文献   

8.
Dry olive residue (DOR) is an abundant waste product resulting from a two-phase olive oil extraction system. Due to its high organic and mineral content, this material has been proposed as an organic soil amendment; however, it presents phytotoxic and microtoxic properties. Thus, a pretreatment is necessary before its application to soil. Among the strategies for the bioremediation of DOR is treatment with ligninolytic fungi, e.g. Coriolopsis floccosa. This work aimed to assess the diversity of culturable fungi in a soil of the southeast Iberian Peninsula and to evaluate the short-term impact of untransformed and C. floccosa-transformed DOR on soil mycobiota. A total of 1,733 strains were isolated by the particle filtration method and were grouped among 109 different species using morphological and molecular methods. The majority of isolates were ascomycetes and were concentrated among three orders: Hypocreales, Eurotiales and Capnodiales. The soil amendment with untransformed DOR was associated with a depression in fungal diversity at 30 days and changes in the proportions of the major species. However, when C. floccosa-transformed DOR was applied to the soil, changes in fungal diversity were less evident, and species composition was similar to unamended soil.  相似文献   

9.
Two arbuscular mycorrhizal fungi (Glomus deserticola and Glomus fasciculatum) were entrapped in calcium alginate, alone or in combination with a phosphate-solubilizing yeast (Yarowia lipolytica) and, after storage for 60 days, were inoculated into soil microcosms with tomato as the test plant. The average extent of root colonization by gel-entrapped G. deserticola and G. fasciculatum were 32 ± 5.6 and 24 ± 12.1%, respectively. Improved infective potential and colonization efficiency were observed when Y. lipolytica was co-entrapped with the mycorrhizal fungi. The best value, 49%, of mycorrhizal colonization was in roots of plants inoculated with G. deserticola co-entrapped with Y. lipolytica.  相似文献   

10.
沈亮  徐荣  刘赛  徐常青  贺宁  刘同宁  陈君 《生态学报》2016,36(13):3933-3942
为探索梭梭根际土壤微生物结构特征及其与肉苁蓉寄生的关系,应用磷脂脂肪酸(PLFA)法分析了5—8月份梭梭生长季节的根际土壤微生物种类及群落结构特征,采用湿筛倾注-蔗糖离心法对其根际土壤AM真菌进行了初步分离和鉴定,并分析了肉苁蓉寄生与梭梭根际微生物及环境因子间的相关性。结果表明,5—7月3个月份的梭梭根际土壤微生物磷脂脂肪酸种类及含量均显著高于8月份,总磷脂脂肪酸和AM真菌磷脂脂肪酸以6月份含量最高。梭梭根际土壤共鉴定出AM真菌4属35种,它们分别为球囊霉属(Glomus)22种、无梗囊霉属(Acaulospora)7种、多孢囊霉属(Diversispora)3种和巨孢囊霉属(Gigaspora)3种。其中以黑球囊霉(Glomus melanosporum)和双网无梗囊霉(Acaulospora bireticulata)为优势种群,并且发现了与寄生有关的巨孢囊霉属AM真菌。6月份和8月份的AM真菌孢子数量最多,而5月份的AM真菌孢子数量最低。6月份梭梭根际土壤提取液得到的肉苁蓉种子萌发率(65.94%)和田间接种寄生率(59.19%)均为最高值,而5月份土壤提取液测试得到的肉苁蓉种子萌发率最低。因此,推测梭梭根际AM真菌可能参与了肉苁蓉的寄生过程。相关分析表明梭梭根际土壤微生物种类和数量主要与土壤温湿度和土壤理化性质相关性较大,其中可能与寄生有关的真菌数量与土壤温度呈显著正相关;肉苁蓉寄生率与土壤温度及土壤养分呈显著负相关。研究为解析梭梭根际土壤微生物在肉苁蓉寄生过程中的作用以及指导肉苁蓉人工种植提供参考。  相似文献   

11.
The present study mainly investigated the ability of solid-state cultures of the non-pathogenic Fusarium oxysporum strain BAFC 738 to transform aromatic components to reduce the phytotoxicity in olive-mill dry residue (DOR), the waste from the two-phase manufacturing process. Lignin, hemicellulose, fats and water-soluble extractives contents of DOR colonized by the fungus for 20 weeks were reduced by 16%, 25%, 71% and 13%, respectively, while the cellulose content increased by 25%. In addition, the ethyl acetate-extractable phenolic fraction of the waste was reduced by 65%. However, mass-balance ultra-filtration and size-exclusion chromatography experiments suggested that the apparent removal of that fraction, mainly including 2-(3,4-dihydroxyphenyl)ethyl alcohol and 2-(4-hydroxyphenyl)ethyl alcohol, was due to polymerization. Mn-peroxidase and Mn-independent peroxidase activities were found in F. oxysporum solid-state cultures, while laccase and aryl alcohol oxidase activities were not detected. Tests performed with seedlings of tomato (Lycopersicum esculentum L.), soybean (Glycine maximum Merr.), and alfalfa (Medicago sativa L.) grown on soils containing 6% (w/w) of bioconverted DOR (kg soil)(-1) showed that the waste's phytotoxicity was removed by 20 weeks-old fungal cultures. By contrast, the same material exhibited a high residual toxicity towards lettuce (Lactuca sativa L.).  相似文献   

12.
The short-term response of the resident soil bacterial and fungal communities to the addition of 5% (w/w) of either dry olive mill residue (DOR), DOR treated with Phlebia sp. (PTDOR) or DOR previously extracted with water (WEDOR) was investigated. As opposed to bacteria, the diversity of fungi increased upon the amendments as assessed by denaturing gradient gel electrophoresis of 18S rDNA. Over the first 30 days, phospholipid fatty acids analyses indicated a gradual decrease in the relative abundances of Gram+ bacteria (from 44.8% to 37.9%) and a concomitant increase of Gram bacteria (from 37.3% to 51.2%) in DOR-amended soil. A considerable increase in the fungal/bacterial ratio was observed after 7 days in DOR, WEDOR and PTDOR-amended soils with respect to the control (0.316, 0.165 and 0.265, respectively, vs. 0.011). The overall microbial activity was stimulated by the amendments as indicated by the higher activity levels of both dehydrogenase and fluorescein diacetate hydrolase. These results indicate that DOR at the application level examined is not toxic on soil microorganisms.  相似文献   

13.
Abstract

Greenhouse experiments were conducted to evaluate the efficacy of five arbuscular mycorrhizal fungi (AMF) in combination with bioformulated Paecilomyces lilacinus (PL Gold?) against Meloidogyne incognita on tomato in two Ultisols in Nigeria. Root galling and egg production were higher in Calabar than Nsukka Ultisols. P. lilacinus application did not inhibit tomato root colonisation by any of the AMF. Double application of PL Gold? in combination with Glomus etunicatum caused a significant change in the susceptibility of the tomato cultivar with a gall index (GI) =4.00 to (GI=2.00) in Nsukka Ultisol, while a similar result was obtained with Glomus mosseae, G. deserticola and G. etunicatum in Calabar Ultisols (GI=2.33). Application of both biocontrol agents significantly (P≤0.05) enhanced growth and yield of tomato plants. The highest fresh fruit yield was obtained in Calabar soil when Gi. gigantea was combined with double application of the bionematicide while the same result was obtained with G. deserticola in Nsukka soil.  相似文献   

14.
Liu R  Dai M  Wu X  Li M  Liu X 《Mycorrhiza》2012,22(4):289-296
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.  相似文献   

15.
Medicago arborea can be used for re-vegetationpurposes under semiarid conditions. These woody legumes have the ability toforman association with arbuscular mycorrhizal (AM) fungi and rhizobial bacteria,which can be maximised by microorganisms producing certain stimulatingmetabolites acting as plant growth promoting rhizobacteria (PGPR). The effectsof single and combined inoculations using microorganisms with different andinteractive metabolic capacities, namely three Glomusspecies, two Rhizobium meliloti strains (a wild type, WTand its genetically modified derivative GM) and a plant growth promotingrhizobacterium, (PGPR), were evaluated. All three inoculated AM fungi affectedMedicago growth in different ways. Differences weremaintained when soil was co-inoculated with each of the rhizobial strains (WTorGM) and the PGPR. Mycorrhizal fungi were effective in all cases, but the PGPRonly affected plant growth specific microbial situations. PGPR increased growthof G. mosseae-colonised plants associated withRhizobium WT strain by 36% and those infected byG. deserticola when associated with the rhizobial GMstrainby 40%. The most efficient microbial treatments involved mycorrhizalinoculation, which was an indication of the AM dependency of this plantspecies.Moreover, PGPR inoculation was only effective when associated with specificmycorrhizal endophytes (G. mosseae plus WT andG.deserticola plus GM rhizobial strain). The reduced root/shoot (R/S)ratio resulting from PGPR inoculation, was an indication of more effective rootfunction in treated plants. AM colonisation and nodule formation wereunaffectedby the type of AM fungus or bacteria (rhizobial strain and/or PGPR). AM fromnatural soil were less infective and effective than those from the collection.The results supported the existence of selective microbial interactionsaffecting plant performance. The indigenous AM fungi appeared to be ineffectiveand M. arborea behaved as though it was highly dependentonAM colonisation, which implied that it must have a mycorrhizal association toreach maximum growth in the stressed conditions tested. Optimum growth ofmycorrhizal M. arborea plants was associated with specificmicrobial groups, accounting for a 355% increase in growth overnodulatedcontrol plants. The beneficial effect of PGPR in increasing the growth of awoody legume, such as M. arborea under stress, was onlyobserved with co-inoculation of specific AM endophytes. As a result of theinteraction, only shoot biomass was enhanced, but not as a consequence ofenhancing of the colonising abilities of the endophytes. The growthstimulation,occurring as a consequence of selected microbial groups, may be critical anddecisive for the successful establishment of plants under Mediterraneanclimaticand soil conditions.  相似文献   

16.
Improved salt tolerance of mycorrhizal plants is commonly attributed to their better mineral nutrition, particularly phosphorus. However, the effect of arbuscular-mycorrhizal (AM) fungi on salt tolerance may not be limited to this mechanism. We investigated the possibility that non-nutritional effects of AM fungi, based on proline accumulation or increased photosynthesis and related parameters, can influence the tolerance of lettuce (Lactuca sativa L.) to salinity. Three levels of salt (3, 4 and 5 g NaCl kg-1 dry soil) were applied and plants were maintained under these conditions for 7 weeks. The salt-treated AM plants produced greater root and shoot dry weights than unfertilized or P-fertilized non-AM controls. With increasing salinity, both shoot and root dry weights were reduced, but this decrease was greater in uninoculated plants. In particular, shoot dry weight was not reduced in G. fasciculatum-colonized plants as a consequence of salt, whereas in uninoculated plants it was reduced by about 35% at the highest salt level. Proline accumulation was considerably lower for P-amended non-AM and for AM plants except for G. mosseae-colonized plants than was the case for unamended plants. Transpiration, carbon dioxide exchange rate (CER), stomatal conductance and water use efficiency (WUE) were higher in mycorrhizal plants. At 5 g NaCl kg-1, both photosynthesis and WUE increased by more than 100% in mycorrhizal treatment relative to uninoculated plants. The contents of phosphorus of P-fertilized non-AM plants was similar to or higher than those of G. mosseae- and G. fasciculatum-colonized plants. Plants colonized by G. deserticola had the highest P-content regardless of salt level. Hence, the effect of G. mosseae and G. fasciculatum on salt tolerance in this experiment could not be attributed to a difference in the P content. The mechanisms by which these two fungi alleviated salt stress appeared to be based on physiological processes (increased CER, transpiration, stomatal conductance and WUE) rather than on nutrient uptake (N or P).  相似文献   

17.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   

18.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

19.
The differential phytotoxicity of purified AAL-toxin to lines of tomato isogenic for the Asc gene parallels resistance to Alternaria alternata f.sp. lycopersici. This relationship, as reported earlier, is consistent with the role of AAL-toxin as a host-specific toxin with the role of a primary chemical determinant of Alternaria stem canker. Current results indicate the pathogen and the AAL-toxin also can be recovered from ripe fruit with symptoms of the disease known as black mold. Fumonisins are structurally similar to the AAL-toxins but are secreted by Fusarium moniliforme which is taxonomically distinct from A. alternata. F. moniliforme, is not pathogenic on living tomato tissues but was recovered from ripe tomato fruit with symptoms of black mold. The penetration of ripe fruit and subsequent colonization by both fungi appears to be saprophytic. Fumonisins and AAL-toxins express equivalent genotype-specific activity against the isogenic Asc lines of tomato and produce equivalent necrotic symptoms in tomato leaflet bioassays. Evidence was obtained that the biosynthetic pathway for production of these toxins is present in several species of both Alternaria and Fusarium. Toxin biosynthesis was sensitive to nutritional regulation in both genera. However, pathogenicity on tomato was not altered by the medium used for inoculum production in either genera and remained restricted to A. alternata f.sp. lycopersici in the studies reported here. Differences in the amount of toxin produced were found among isolates of both genera while the magnitude of the differences was defined by the substrate on which the fungi were grown.  相似文献   

20.
We studied the influence of inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck & Smith, Glomus deserticola Trappe, Bloss. & Menge and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of composted sewage sludge (SS) on the activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX) and of shoot and root nitrate reductase (NR, EC 1.6.6.1) in Juniperus oxycedrus L. seedlings, an evergreen shrub, grown in a non-sterile soil under well-watered and drought-stress conditions. Both the inoculation with exotic AM fungi and the addition of composted SS stimulated significantly growth and the N and P contents in shoot tissues of J. oxycedrus with respect to the plants neither inoculated nor treated with composted SS that were either well-watered or droughted. Under drought-stress conditions, only inoculation with exotic AM fungi increased shoot and root NR activity (about 188% and 38%, respectively, with respect to the plants neither inoculated nor treated with composted SS). Drought increased the POX and SOD activities in both shoots of J. oxycedrus seedlings inoculated with exotic AM fungi and grown with composted SS, but the increase was less than in the plants neither inoculated nor treated with SS. Both the plants inoculated with exotic AM fungi and the plants grown with composted SS developed additional mechanisms to avoid oxidative damage produced under water-shortage conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号