首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

2.
Physical damage of animal cells in suspension culture, due to stirring and sparging, is coupled with complex metabolic responses. Nylon microcapsules, therefore, were used as a physical model to study the mechanisms of damage in a stirred bioreactor and in a bubble column. Microcapsule breaskage folowed first-order kinetices in all experiments Entrainment of bubbles into the liquid phase in the stirred bioreactor gave more microcapsule breakage. In the bubble column, the bubble bursting zone at gas-liquid interface was primarilu responsible for microcapsule breakage. The forces on the microcapsules were equivalent to an external pressure of approximately 4 x 10(4) N . m(-2), based on the critical microcapsule diameter for survival of 190 mum. A stable foam layer, however, was found to be effective in protecting microcapsules from damage. The microcapsule transport to the gas-liquid interface and entrainment into the foam phase was consistent with flotation by air bubbles. This result implies that additives and operation of bioreactors should be selected to minimize flotation of cells. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Pluronic F-68 (PF-68) is routinely used as a shear-protection additive in mammalian cell cultures. However, most previous studies of its shear protection mechanisms have typically been qualitative in nature and have not covered a wide range of PF-68 and cell concentrations. In this study, interactions between air bubbles along with the associated cell damage were investigated using the novel adenovirus-producing cell line PER.C6, a human embryonic retinoblast transfected with the adenovirus type 5 E1 gene. A wide range of PF-68 and cell concentrations (approximately 3 orders of magnitude) were used in these studies. At low PF-68 concentrations (0.001 g/L), cells had a very high affinity for bubbles, indicated by a more than 10-fold increase in cell concentration in the foam layer liquid versus the bulk liquid. At high PF-68 concentrations ( approximately 3 g/L), however, the cell concentration in the foam layer liquid was only approximately 40% of that in the bulk cell suspension. The number of cells associated with each bubble decreased from approximately 1000 cells at 0.001 g/L PF-68 to approximately 120 cells at 3 g/L PF-68. Despite the lower cell affinity for bubbles at a high PF-68 concentration, at high cell concentrations (10(7) cells/mL and 1 g/L PF-68) significant cell entrapment occurred in the foam layer, on the order of 1000 cells/bubble. For the cells carried by the bubbles, quantitative cell damage data revealed that the probability of cell death from bubble rupture was independent of bulk cell concentration but was affected by PF-68 concentration. These quantitative studies further indicated that even at a low PF-68 concentration of 0.03 g/L, approximately 30% of the attached cells were killed during the bubble rupture process. At the same time, at low PF-68 concentration (<0.1 g/L), significant cell death occurred prior to bubble rupture. On average, a bubble disrupted more cells in the bulk liquid and/or foam layer than during rupture. For both mechanisms, the number of cells damaged by each bubble increased with decreasing PF-68 concentration and increasing bulk cell concentration.  相似文献   

4.
A new type of bubble aeration column called a hollow fiber membrane (HFM) aeration column was proposed, which was featured in the use of hollow fiber membranes and gave a high bubble density in the column. The value of k(L)a was increased by modifying the membrane surface for making the pore size smaller. The Sauter mean diameter of bubbles (D(vs)) was 2.0 +/- 0.1 mm in the range of the superficial gas velocity from 0.02 m s(-1) to 0.065 m s(-1), while that obtained for the bubbles near the membrane was 811 mum at the superficial gas velocity of 4.0 x 10(-4) m s(-1). The difference was ascribed to the effect of coalescence of bubbles. The value of K(L)a increased in proportion to the superficial gas velocity up to 0.02 m s(-1), and was almost constant above 0.03 m s(-1). The maximum value of k(L)a, 2.5 s(-1), was higher than those of the other aeration columns reported previously. The pneumatic power consumption per unit liquid volume (P(v)) for obtaining the same k(L)a was the smallest in the HFM aeration columns. P(v), for obtaining the same interfacial area of bubbles per liquid volume, was also lower than those for other types of aeration columns. It was suggested from the measurement of bubble diameter that the larger interfacial area generated in the HFM aeration column ascribes to the larger gas holdup than the smaller D(vs). (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
BACKGROUND AND AIMS: In response to inclination stimuli, gymnosperm trees undergo corrective growth during which compression wood develops on the lower side of the inclined stem. High compressive growth stress is generated in the compression wood region and is an important factor in righting the stem. The aims of the study were to elucidate how the generation of compressive growth stress in the compression wood region is involved in the righting response and thus to determine a righting mechanism for tree saplings. METHODS: Cryptomeria japonica saplings were grown at inclinations of 0 degrees (vertical) to 50 degrees. At each inclination angle, the growth stress on the lower side of the inclined stem was investigated, together with the degree of compression-wood development such as the width of the current growth layer and lignin content, and the upward bending moment. KEY RESULTS: Growth stress, the degree of compression wood development, and the upward moment grew as the stem inclination angle increased from 0 to 30 degrees, but did not rise further at inclinations > 30 degrees. CONCLUSIONS: The results suggest the following righting mechanism for gymnosperm saplings. As the stem inclination is elevated from 0 to 30 degrees, the degree of compression wood development increases to force the sapling back to its original orientation; at inclinations > 30 degrees, the maximum degree of compression wood is formed and additional time is needed for the stem to reorient itself.  相似文献   

6.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

7.
The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k(L)a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.  相似文献   

8.
Dinoflagellate bioluminescence , a common source of bioluminescence in coastal waters , is stimulated by flow agitation . Although bubbles are anecdotally known to be stimulatory , the process has never been experimentally investigated . This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater . Cells were stimulated by isolated bubbles of 0 . 3–3 mm radii rising at their terminal velocity , and also by bubble clouds containing bubbles of 0 . 06–10 mm radii for different air flow rates . Stimulation efficiency , the proportion of cells producing a flash within the volume of water swept out by a rising bubble , decreased with decreasing bubble radius for radii less than approximately 1 mm . Bubbles smaller than a critical radius in the range 0 . 275–0 . 325 mm did not stimulate a flash response . The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud , with lower stimulation levels observed for clouds with smaller bubbles . An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates . High air flow rates stimulated more light emission than expected , presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud . These results are relevant to bioluminescence stimulation by bubbles in two‐phase flows , such as in ship wakes , breaking waves , and sparged bioreactors . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The profiles of photon flux density incidented on a tubularloop photobioreactor in the day could be altered by inclining the bioreactor at an angle with the horizontal. The photon flux density at noon decreased with increasing angle of inclination, whereas the photon flux density in the early morning and late afternoon increased with increasing angle of inclination. The overall photosynthetic radiance received by the bioreactor inclined at 0, 25, 45, and 80 degrees was 1:0.89:0.77:0.62. Regardless of the angle of bioreactor inclination, the overall biomass output rate of a fed-batch culture over an 8-h/day period was comparable (26-36 g-biomass m(-2) bioreactor surface area day(-1)). As a bioreactor inclined at an angle occupied smaller land area, and daily biomass output rate per land area of a bioreactor inclined at 80 degrees (130 g-biomass m(-2) land) was about six times of that obtainable at horizontal position (21-g biomass m(-2) land). The bioenergetics growth yield from the absorbed photosynthetic radiance was not a constant but an inverse function of the photon flux density. The quasi-steady state chlorophyll content of the Chlorella cells varied between 36 and 63 mg g(-1) cells. Photoinhibition of the maximum photosynthetic capacity was not observed in this study.  相似文献   

10.
We describe a method by which the degree of bubble saturation can be determined by measuring the velocity of single bubbles at different heights from the bubble source in pure water containing increasing concentrations of surfactants. The highest rising velocities were measured in pure water. Addition of surfactants caused a concentration-dependent and height-dependent decrease in bubble velocity; thus, bubbles are covered with surfactants as they rise, and the distance traveled until saturation is reached decreases with increased concentration of surfactant. Pluronic F68 is a potent effector of bubble saturation, 500 times more active than serum. At Pluronic F68 concentrations of 0.1% (w/v), bubbles are saturated essentially at their source. The effect of bubble saturation on the interactions between animal cells and gas bubbles was investigated by using light microscopy and a micromanipulator. In the absence of surfactants, bubbles had a killing effect on cells; hybridoma cells and Chinese hamster ovary (CHO) cells were ruptured when coming into contact with a bubble. Bubbles only partially covered by surfactants adsorbed the cells. The adsorbed cells were not damaged and they also could survive subsequent detachment. Saturated bubbles, on the other hand, did not show any interactions with cells. It is concluded that the protective effect of serum and Pluronic F68 in sparged cultivation systems is based on covering the medium-bubble interface with surfaceactive components and that cell death occurs either after contact of cells with an uncovered bubble or by adsorption of cells through partially saturated bubbles and subsequent transport of cells into the foam region. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
Summary Electrical conductivity microprobes have been used to estimate the transverse variation of bubble size, local gas holdup and local specific gas/liquid interfacial area in bench scale bubble column bioreactors containing fermentation model media. Inserted O2-electrodes and plane parallel windows alter the structure of the two phase flow. Even slight tilting of the column strongly influences the transverse profiles of the bubble size and local gas holdup. The larger bubbles are collected at the wall, where they can be redispersed. These observations open up new possibilities for the construction of bubble column bioreactors.  相似文献   

12.
Multiple equilibrium stages can be engendered in foam fractionation, a process used for the enrichment of streams of proteins, by returning some of the foamate stream to the top of the column as external reflux liquor. However, it was recognised, 40 years ago that reflux could be autogenously created through the coalescence of bubbles in fractionation columns. By invoking the hydrodynamic theory of rising foam, we suggest a mechanism for the creation of internal reflux in foam fractionation. This method can give internal reflux rate as a function of bubble size. However, since the bubble size profile in a rising foam cannot be estimated, we cannot yet estimate how internal reflux varies with position in the column.  相似文献   

13.
Hairy root cultures of Artemisia annua L were cultivated in four different culture systems: a flask, a bubble column, a modified bubble column and a modified inner-loop airlift bioreactor. The artemisinin contents of hairy root cultures in the bubble column and the modified inner-loop airlift bioreactor were higher than that in the modified bubble column. The growth rate and hairy root distribution in the modified inner-loop airlift bioreactor were better than those in other bioreactors, and dry weight and artemisinin production reached to 26.8 g/L and 536 mg/L after 20 days.  相似文献   

14.
A new bubble aeration system was designed to minimize cell killing and cellular damage due to sparging. The residence time of the bubbles in the developed bubble bed reactor was prolonged dramatically by floating them in a countercurrent produced by an impeller. The performance of the new reactor bubble aeration system, implemented in a laboratory reactor, was tested in dynamic aeration experiments with an without cells. An efficiency up to 95% in oxygen transfer could be achieved, which enables a much lower gas flow rate compared with conventional bubble aeration reactors. The low gas flow rate is important to keep cell damage by bubbles as low as possible. A laser light sheet technique used to find the optimal flow pattern in the reactor. The specific power dissipation of the impeller is a good measure to predict cell damage in a turbulent flow. Typical values for the power dissipation measured in the bubble bed reactor were in the range of 0.002 to 0.013 W/kg, which is far below the critical limit for animal cells. The growth of a hybridoma cell line was studied in cell cultivation experiments. A protein-free medium without supplements such as serum or Pluronic F68 was used to exclude any effect of cell-protecting factors, No difference in the specific growth rate and the yield of the antibodies was observed in cell grown in the bubble free surface aeration in the spinner flask. In contrast to the spinner flask, however, the bubble bed reactor design could be scaled up. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Successful in vitro propagation of clonal apple rootstock MM106 was achieved by culturing axillary buds on MS basal medium with BAP (1 mg/L), GA3 (0.5 mg/L) and IBA (0.1 mg/L). Use of liquid medium (LM) in initial cultures reduced phenol exudation to a greater extent and gave maximum sprouting percentage when transferred to solid MS medium. Phloroglucinol (PG) did not enhance sprouting of buds but increased the rate of multiplication when added in the medium. Maximum number of shoots were obtained when MS medium was supplemented with BAP (0.5 mg/L), GA3 (1 mg/L), IBA (0.1 mg/L) and PG (100 mg/L). For rooting, in vitro regenerated shoots were placed in IBA (30 mg/L) for 3 hr and transferred to solidified auxin free medium. Rooting was recorded in about 80% of shoots. Inclusion of PG in rooting medium was not beneficial but shoot cultures grown in its presence gave higher rooting percentage. Rooted plantlets showed about 70% survival rate in potting mixture of sand:soil:perlite (1:1:1).  相似文献   

16.
Endothelial dysfunction induced by bubbles plays an important role in decompression sickness (DCS), but the mechanism of which has not been clear. The present study was to investigate the role of autophagy in bubble‐induced endothelial injury. Human umbilical vein endothelial cells (HUVECs) were treated with bubbles, autophagy markers and endothelial injury indices were determined, and relationship strengths were quantified. Effects of autophagy inhibitor 3‐methyladenine (3‐MA) were observed. Bubble contact for 1, 5, 10, 20 or 30 minutes induced significant autophagy with increases in LC3‐II/I ratio and Beclin‐1, and a decrease in P62, which correlated with bubble contact duration. Apoptosis rate, cytochrome C and cleaved caspase‐3 increased, and cell viability decreased following bubble contact for 10, 20 or 30 minutes, but not for 1 or 5 minutes. Injuries in HUVECs were correlated with LC3‐II/I ratio and partially reversed by 3‐MA in 10, 20 or 30 minutes contact, but worsened in 1 or 5 minutes. Bubble pre‐conditioning for 1 minutes resulted in increased cell viability and decreased apoptosis rate compared with no pre‐conditioning, and 30‐minutes pre‐conditioning induced opposing changes, all of which were inhibited by 3‐MA. In conclusion, autophagy was involved and played a biphasic role in bubble‐induced endothelial injury.  相似文献   

17.
It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Gas transfer and mixing were characterized in a 32-L bubble column reactor equipped with a commercially available rubber membrane diffuser. The performance of the membrane diffuser indicates that the slits in the membrane are best described as holes with elastic lids, acting as valves cutting off bubbles from the gas stream. The membrane diffuser thus functions as a one-way valve preventing backflow of liquid. Our design of the bottom plate of the reactor enabled us to optimize the aeration by changing the tension of the membrane. We thereby achieved mass transfer coefficients higher than those previously reported in bubble columns. A strong dependence of mass transfer on gas holdup and bubble size was indicated by estimates based on these two variables. The microalga, Rhodomonas sp. , sensitive to chemical and physical stress, was maintained for 8 months in continuous culture with a productivity identical to cultures grown in stirred tank reactors. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

19.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

20.
The effect of backrest inclination, lumbar support and thoracic support on the erector spinae muscle when lifting while sitting has been investigated. It was found that the lowest values of the iEMG of the back muscle were obtained when: (1) the lumbar support was positioned +4 cm forward, the thoracic support inclined to +10 degrees and the backrest inclination at 110 degrees; (2) the lumbar support was positioned +4 cm forward, the thoracic support inclined to +10 degrees and the backrest inclined to 100 degrees; (3) the lumbar support was positioned +1 cm forward, the thoracic support inclined to +10 degrees and the backrest inclination 110 degrees; (4) the backrest was inclined to 100 degrees the thoracic support inclined to 10 degrees and the lumbar support 1 cm forward; (5) the backrest inclination and lumbar support were both increased; (6) the thoracic support and the backrest inclination were both increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号