首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《IRBM》2008,29(2-3):181-186
Fluoroquinolones are antibacterial agents, effective against Gram positive and Gram negative bacteria. With the aim of detecting fluoroquinolones rapidly and easily, fluoroquinolone models of ciprofloxacin functionalized by pyrrole or amino groups were synthesized. The electrochemical behavior of the pyrrole derivatives and their electropolymerization properties were investigated in organic media. In parallel, the amino derivative was chemically grafted onto an electropolymerized polypyrrole film. The resulting polymer has been incubated with anticiprofloxacin antibody, leading to the antibody immobilization by an immunoreaction with the ciprofloxacin model. The impedance behavior of the modified electrode was then examined towards the effect of ciprofloxacin.  相似文献   

2.
In this study, a novel electroconductive interface was prepared based on Fe3O4 magnetic nanoparticle and cysteamine functionalized gold nanoparticle. The engineered interface was used as signal amplification substrate in the electrochemical analysis of antibody‐antigen binding. For this purpose, biotinilated‐anti‐prostate‐specific antigen (PSA) antibody was bioconjugated with iron oxide magnetic nanoparticles (Fe3O4) and drop‐casted on the surface of glassy carbon electrode (GCE). Also, secondary antibody (HRP‐Ab2) encapsulated on gold nanoparticles caped by cysteamine was immobilized on the surface of GCE modified electrode. A transmission electron microscopy images shows that a sandwich immunoreaction was done and binding of Ab1 and Ab2 performed successfully. Various parameters of immunoassay, including the loading of magnetic nanoparticles, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.001 μg. L?1 of PSA was obtained under optimum experimental conditions. It is found that such magneto‐bioassay could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for early stage diagnosis of cancer in near future.  相似文献   

3.
We developed a conventional immunosensor for fibrinogen and fibrin degradation products (FDP) to combine a quartz crystal microbalance (QCM) with the agglutination reaction of immunized latex beads. FDP induced an immunoreaction due to anti-FDP antibody immobilized latex particles. We successfully measured FDP concentration of in human serum within 10 min by QCM method. The detection range of QCM immunosensor is covered with screening concentration of FDP in serum (<10 microg/ml of FDP). The time course of latex agglutination obtained from QCM immunosensor is synchronized to that of latex photometric immunoassay. SEM was used to observe the surface of QCM that applied FDP serum. The size of latex particles agglutinated on the QCM electrode increased concomitant with FDP concentration. Frequency shift on immunoreaction explains the increased adsorption amount of agglutinated latex on QCM.  相似文献   

4.
The quartz crystal microbalance (QCM), in combination with electrochemical impedance spectroscopy (EIS), has been utilized to monitor in situ antihuman IgG (hIgG) adsorption on bare poly(o-phenylenediamine) (PPD)- and 1-dodecanethiol (C12SH)-modified Au electrodes and succeeding human IgG reaction, respectively. The resonant frequency (f) and the motional resistance (R(1)) of the piezoelectric quartz crystal (PQC) as well as electrochemical impedance (EI) parameters were measured and discussed. The standard heterogeneous rate constants of the ferricyanide/ferrocyanide couple before and after the antibody adsorption and antibody-antigen reactions were determined. The results show that the amount for antibody adsorption was the greatest on the most hydrophobic (1-dodecanethiol-modified) surface, while the antibody bioactivity was almost identical on the three kinds of surfaces. Two parameters simultaneously obtained, Deltaf and DeltaC(s) (interfacial capacitance), have been used for the first time to estimate both the association constant of the immunoreaction and the valence of antigen with satisfactory results. The proposed method may find wide application in interfacial biochemistry studies for its advantages in providing real-time multidimensional piezoelectric and electrochemical impedance information.  相似文献   

5.
We used colloidal Au to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal Au onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)6](4-)/[Fe(CN)6](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degrees C for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 microg/l and a detection limit of about 50 ng/l.  相似文献   

6.
A novel label-free immunosensing strategy for sensitive detection of tumor necrosis factor-alpha antigen (TNF-α) via surface-initiated atom transfer radical polymerization (SI-ATRP) was proposed. In this strategy, the Au electrode was first modified by consecutive SI-ATRP of ferrocenylmethyl methacrylate (FMMA) and glycidyl methacrylate (GMA), and TNF-α antibody was coupled to the copolymer segment of GMA (PGMA) by aqueous carbodiimide coupling reaction. Subsequently, the target TNF-α antigen was captured onto the Au electrode surface through immunoreaction. The whole process was confirmed by scanning electron microscopy (SEM) and surface plasmon resonance (SPR) measurements. With introduction of redox polymer segment of FMMA (PFMMA) as electron-transfer mediator, the antigen-coupled Au electrode exhibited well electrochemical behavior, as revealed by cyclic voltammetry measurement. This provided a sensing platform for sensitive detection of TNF-α with a low detection limit of 3.9pgmL(-1). Furthermore, the "living" characteristics of the ATRP process can not only be readily controlled but also allow further surface functionalization of the electrodes, thus the proposed method presented a way for label-free and flexible detection of biomolecules.  相似文献   

7.
Polystyrene fluorescent microspheres prepared by deposition of CdTe quantum dots (QDs) are used in an immunoassay in this study. CdTe QDs/polyelectrolyte multilayers on the surface of polystyrene microspheres have been formed by layer-by-layer self-assembly via electrostatic interactions. As a model antigen, rabbit IgG has been bound to the outermost layer of the fluorescent microspheres. The immunoreaction between fluorescent microspheres/rabbit IgG and the corresponding antibody was confirmed by change of the fluorescence spectrum and competitive immunoassay. This approach allowed detection of the antigen (rabbit IgG) in the range 1-500 mg/L, based on the change in the fluorescence intensity of the reporter (fluorescent microspheres/rabbit IgG). A novel microfluidic chip device with a laser-induced fluorescence system was established and used for the detection of fluorescent microspheres in this study.  相似文献   

8.
A new heterogeneous "sandwich" immunoassay utilizing microparticles as labels to realize high sensitivity is described. In this method, antibody fixed on the microparticles reacts with antigen previously trapped on a microplate surface, which makes the antigen molecules visible and countable with an inverted optical microscope. The method is highly sensitive because the reacted single microparticle, therefore single antigen molecule, can be detected. The sensitivity depends both on the reaction efficiency of the immunoreaction and on nonspecific adsorption of the microparticles on the microplate surface. Therefore, the protocol for preparing microparticle having antibody on the surface and a microplate having capture antibody was investigated to realize high sensitivity. Carboxylated microparticles of 0.76 microns in diameter were conjugated with affinity-purified antibody using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. It was determined that 1 g microparticles had 880 micrograms antibody (approximately 1100 antibody molecules per 1 microparticle). The immunoreaction efficiency reached 18% at 1 x 10(-13) mol/liter antigen concentration. The lower detection limit was 3.1 x 10(-14) mol/liter (1.6 amol) using human alpha-fetoprotein as a model antigen.  相似文献   

9.
Two generic, fast, sensitive and novel electrochemical immunosensors have been developed. Initially, a layer of plasma-polymerized Nafion film (PPF) was deposited on the platinum electrode surface, then positively charged tris(2,2'-bipyridyl)cobalt(III) (Co(bpy)(3)(3+)) and negatively charged gold nanoparticles were assembled on the PPF-modified Pt electrode by layer-by-layer technique. Finally, hepatitis B surface antibody (HBsAb) was electrostatically adsorbed on the gold nanoparticles surface. Electrochemical behavior of the {Au/Co(bpy)(3)(3+)}(n) multilayer film-modified electrodes was studied. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS) were adopted to monitor the regular growth of the multilayer films. The performance and factors influencing the performance of the resulting immunosensors were studied in detail. The multilayer film-modified immunosensor was used for hepatitis B surface antigen (HBsAg) determination via the amperometric and potentiometric immunosensor systems, and both systems provided the same linear ranges from 0.05 to 4.5 microg/mL with different detection limits for the amperometric system 0.005 microg/mL and for the potentiometric system 0.015 microg/mL. The immunosensors were used to analyse HBsAg in human serum samples. Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting HBsAg in the clinical diagnosis. In addition, the multilayer films also showed better stability for 1 month at least.  相似文献   

10.
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (?=16nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.  相似文献   

11.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

12.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

13.
We report ricin detection using antibody and aptamer probes immobilized on a nanoelectrode array (NEA) consisting of vertically aligned carbon nanofibers (VACNFs). These biosensor chips are fabricated on a wafer scale using steps common in integrated circuit manufacturing. Electrochemical impedance spectroscopy is used to characterize the detection event and the results indicate that the electron transfer resistance changes significantly after the ricin protein binds to the probe. Further confirmation is obtained from evaluation of the electrode surface by atomic force microscopy which clearly shows a change in height from the bare electrode to the surface bound by the probe-protein.  相似文献   

14.
The label-free amperometric detection of a rabbit IgG antigen by an anti-rabbit IgG antibody is achieved by observing the electrochemistry at a glassy carbon electrode modified with antibody entrapped in an electrodeposited polypyrrole membrane. In a flow injection apparatus the electrode is pulsed between -0.2 and +0.4 V versus Ag/AgCl. The pulsing of the electrode switches the polypyrrole membrane between the oxidised and reduced states. When antigen is injected into the flow stream a change in current is observed at the electrode despite the antigen or antibody being redox inactive at the potentials employed. It is proposed that this current is due to a change in the flux of ions into and out of the polypyrrole matrix during a pulse when the poly-anionic antigen is present. The immunoreaction was reversible because the 200 ms pulse at each potential was too short to allow secondary bonding forces (hydrogen bonding and hydrophobic forces) which are responsible for the strength of the antibody-antigen complex to be established. The consequence of the reversibility of the antigen-antibody binding is a low apparent affinity constant but an easily regenerated recognition interface.  相似文献   

15.
The microscopic surface molecular structures and macroscopic electrochemical impedance properties of the epoxysilane monolayer and anti-Escherichia coli antibody layer on an indium-tin oxide (ITO) electrode surface were studied in this paper. Characterization of stepwise changes in microscopic features of the surfaces and electrochemical properties upon the formation of each layer were carried out using both atomic force microscopy (AFM) and electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-) as a redox couple. AFM images of the self-assembled monolayer (SAM) evidenced the dense, complete, and homogeneous morphology of the epoxysilane monolayer on the ITO surface. The uniformity of the epoxysilane SAM allowed antibodies to attach to the epoxy surface groups of the silanes in a similarly uniform fashion. The effects of epoxysilane monolayer and the antibody layer on the electrochemical properties of the electrode were quantitatively analyzed in terms of double layer capacitance, electron transfer resistance, Warburg impedance and solution resistance using Randles model as the equivalent circuit. It was demonstrated that the epoxysilane monolayer and the antibody layer act as barriers for the electron transfer between the electrode surface and the redox species in the solution, resulting in most significant increases in the electron transfer resistance compared to all the electric elements. Immunoreaction with E. coli O157:H7 cells demonstrated specific recognition of the immobilized anti-E. coli antibodies as evidenced by AFM imaging and impedance spectroscopy. It was found that the binding of E. coli cells mainly affected the electron transfer resistance and Warburg impedance.  相似文献   

16.
Zeng G  Yang P  Zheng Z  Feng Q  Cai J  Zhang S  Chen ZW 《Proteomics》2005,5(17):4347-4353
While biosensors have been constructed using various strategies, there is no report describing nanostructures of antibody-immobilized electrode interface in an immunosensor. Here, atomic force microscopy (AFM) and electrochemistry analyses were employed to construct and characterize the nanostructures and electrochemistry of biosensing surface that was created by a sequential self-assembling of bioactive aminobenzenthiol oligomer (o-ABT), glutareldehyde and anti-transferrin (anti-Tf) antibody on the electrode gold surface. Under AFM, a complete coverage of bioactive o-ABT interface could be achieved by anti-Tf antibody at an optimal concentration. The anti-Tf antibody immobilized on electrode surface of the immunosensor exhibited globular-shape topography with some degree of aggregation. Extensive force-curve analysis allowed mapping the functional spots of the anti-Tf immunosensor. Surprisingly, although immunosensing surface was fully covered by anti-Tf antibodies at the optimal concentration, only about 52% of coated anti-Tf antibody molecules (spots) on the electrode surface were able to specifically capture or bind Tf antigen under AFM. Despite limited functional spots, however, the anti-Tf immunosensor was highly specific and sensitive for sensitizing Tf antigen in solution. The anti-Tf molecules on the immunosensor exhibited a greater molecular force bound to holo-Tf (iron-containing form of Tf) than that to apo-Tf (iron-absent form of Tf). Consistently, the anti-Tf immunosensor had a greater electrochemical capacity to sensitize apo-Tf than holo-Tf, supporting the molecular force-based finding by AFM. Thus, the present study elucidated the nanostructures and molecular force bases for the immunosensing capacity of a highly sensitive capacitive immunosensor.  相似文献   

17.
An immuno-biosensing interface comprising a mixed layer of an oligo(ethylene glycol) (OEG) component, and an oligo(phenylethynylene) molecular wire (MW) is described. The OEG controls the interaction of proteins and electroactive interferences with the surface and the MW allows electrochemical communication to the underlying glassy carbon electrode. The layers are formed from in situ generated-aryl diazonium cations. To the distal end of the MW, a redox probe 1,1'-di(aminomethyl)ferrocene is attached followed by the surface bound epitope (the structural feature the antibody selectively recognizes) to which an antibody would bind. Association or disassociation of the antibody with the sensing interface causes a modulation of the ferrocene electrochemistry. X-ray photoelectron spectroscopy, cyclic voltammetry, and square wave voltammetry have been used to characterize the step-wise fabrication of the sensing interface. The influence of the molar ratio of the MW and OEG deposited onto the sensor interface was explored relative to the final sensor sensitivity. Five combinations of MW/OEG 1:0, 1:20, 1:50, 1:75 and 1:100 were tested on sensor sensitivity detection for a model analyte (biotin) free in solution, via a displacement assay. The ratio of 1:50 was found to give the highest sensitivity. At this ratio, good reproducibility (RSD 6.8%) and repeatability (RSD 9.6%) was achieved. This immuno-biosensor provides an intervention free immuno-biosensing platform for agriculture and biomedical samples.  相似文献   

18.
Electrochemical processes at the electrode-electrolyte (body fluid) interface are of ultimate importance for stimulating/sensing electrode function. A high electrode surface area is desirable for safe stimulation through double-layer charging and discharging. Pt and Pt-Ir alloys have been the most common electrode materials. The use of TiN coating as the surface layer on the electrode has found increasing interest because of its metal-like conductivity, excellent mechanical and chemical properties, and the fact that it can be deposited with a high surface area. In this work, electrochemical impedance spectroscopy (EIS), which is a sensitive and non-destructive technique and widely used for characterization of electrical properties of electrode-electrolyte interfaces, was applied to investigate pure Pt and Ti, and TiN coated electrodes exposed to a phosphate-buffered-saline (PBS) solution. Platinized Pt and Ti were also studied for comparison. The capacitance value of the electrodes in PBS was obtained through quantitative analysis of the EIS spectra. The results reveal that the capacitance of the TiN coated electrodes with a rough surface is several hundreds times higher than that of a smooth Pt surface. Platinization of Ti can also increase the capacitance to the same extent as platina. EIS has been shown to be a powerful technique for characterization of stimulating/sensing electrodes.  相似文献   

19.
A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.  相似文献   

20.
A disposable and mediatorless immunosensor based on a conducting polymer (5,2':5'2"-terthiophene-3'-carboxylic acid) coated screen-printed carbon electrode has been developed using a separation-free homogeneous technique for the detection of rabbit IgG as a model analyte. Horseradish peroxidase (HRP) and streptavidin were covalently bonded with the polymer on the electrode and biotinylated antibody was immobilized on the electrode surface using avidin-biotin coupling. This sensor was based on the competitive assay between free and labeled antigen for the available binding sites of antibody. Glucose oxidase was used as a label and in the presence of glucose, H(2)O(2) formed by the analyte-enzyme conjugate was reduced by the enzyme channeling via HRP bonded on the electrode. The catalytic current was monitored amperometrically at -0.35 V vs. Ag/AgCl and this method showed a linear range of RIgG concentrations from 0.5 to 2 microg/ml with standard deviation +/-0.0145 (n=4). Detection limit was determined to be 0.33 microg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号