首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST‐GFP, to other organelles. GOLD36 showed partial distribution of ST‐GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein‐like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk‐flow marker to the cell surface was also compromised. Using a combination of classical mapping and next‐generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus ( At1g54030 ). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock‐out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post‐ER compartments and suggest that its export from the ER is a requirement to ensure steady‐state maintenance of the organelle’s organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.  相似文献   

2.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

3.
Arf GTPases are known to be key regulators of vesicle budding in various steps of membrane traffic in yeast and animal cells. We cloned the Arabidopsis Arf1 homologue, AtArf1, and examined its function. AtArf1 complements yeast arf1 arf2 mutants and its GFP-fusion is localized to the Golgi apparatus in plant cells like its animal counterpart. The expression of dominant negative mutants of AtArf1 in tobacco and Arabidopsis cultured cells affected the localization of co-expressed GFP-tagged proteins in a variety of ways. AtArf1 Q71L and AtArf1 T31N, GTP- and GDP-fixed mutants, respectively, changed the localization of a cis-Golgi marker, AtErd2-GFP, from the Golgi apparatus to the endoplasmic reticulum but not that of GFP-AtRer1B or GFP-AtSed5. GFP-AtRer1B and GFP-AtSed5 were accumulated in aberrant structures of the Golgi by AtArf1 Q71L. A soluble vacuolar protein, sporamin-GFP, was also located to the ER by AtArf1 Q71L. These results indicate that AtArf1 play roles in the vesicular transport between the ER and the Golgi and in the maintenance of the normal Golgi organization in plant cells.  相似文献   

4.
Proper protein localization is essential for critical cellular processes, including vesicle‐mediated transport and protein translocation. Tail‐anchored (TA) proteins are integrated into organellar membranes via the C‐terminus, orienting the N‐terminus towards the cytosol. Localization of TA proteins occurs posttranslationally and is governed by the C‐terminus, which contains the integral transmembrane domain (TMD) and targeting sequence. Targeting of TA proteins is dependent on the hydrophobicity of the TMD as well as the length and composition of flanking amino acid sequences. We previously identified an unusual homologue of elongator protein, Elp3, in the apicomplexan parasite Toxoplasma gondii as a TA protein targeting the outer mitochondrial membrane. We sought to gain further insight into TA proteins and their targeting mechanisms using this early‐branching eukaryote as a model. Our bioinformatics analysis uncovered 59 predicted TA proteins in Toxoplasma, 9 of which were selected for follow‐up analyses based on representative features. We identified novel TA proteins that traffic to specific organelles in Toxoplasma, including the parasite endoplasmic reticulum, mitochondrion, and Golgi apparatus. Domain swap experiments elucidated that targeting of TA proteins to these specific organelles was strongly influenced by the TMD sequence, including charge of the flanking C‐terminal sequence.   相似文献   

5.
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.  相似文献   

6.
Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion.  相似文献   

7.
We have set up an analytical cell fractionation procedure to dissect, by a non-morphological method, the anterograde transport of proteins from endoplasmic reticulum, intermediate compartment and Golgi complex in tissue cultured cells. Using this procedure after pulse-chase labelling of cells expressing human CD8 glycoprotein, we obtained results that: (1) support the view that the intermediate compartment is a distinct station in the export from the endoplasmic reticulum to the Golgi complex; and (2) strongly suggests that the O -glycosylation process starts after the intermediate compartment, presumably in the cis -Golgi complex.  相似文献   

8.
Identification and characterization of five new subunits of TRAPP   总被引:11,自引:0,他引:11  
TRAPP (transport protein particle), a multiprotein complex containing ten subunits, plays a key role in the late stages of endoplasmic reticulum to Golgi traffic in the yeast Saccharomyces cerevisiae. We previously described the identification of five TRAPP subunits (Bet5p, Trs20p, Bet3p, Trs23p and Trs33p). Now we report the identification of the remaining five subunits (Trs31p, Trs65p, Trs85p, Trs120p and Trs130p) as well as an initial characterization of the yeast complex and its human homologue. We find that three of the subunits are dispensable for growth and a novel sequence motif is found in Bet3p, Trs31p and Trs33p. Furthermore, biochemical characterization of both yeast and human TRAPP suggests that this complex is anchored to a Triton X-100 resistant fraction of the Golgi. Differences between yeast and human TRAPP as well as the relationship of TRAPP subunits to other docking/tethering factors are discussed.  相似文献   

9.
Endoplasmic reticulum (ER) proteins maintain their residency by static retention, dynamic retrieval, or a combination of the two. Tail-anchored proteins that contain a cytosolic domain associated with the lipid bilayer via a hydrophobic stretch close to the COOH terminus are sorted within the secretory pathway by largely unknown mechanisms. Here, we have investigated the mode of insertion in the bilayer and the intracellular trafficking of cytochrome b(5) (b[5]), taken as a model for ER-resident tail-anchored proteins. We first demonstrated that b(5) can acquire a transmembrane topology posttranslationally, and then used two tagged versions of b(5), N-glyc and O-glyc b(5), containing potential N- and O-glycosylation sites, respectively, at the COOH-terminal lumenal extremity, to discriminate between retention and retrieval mechanisms. Whereas the N-linked oligosaccharide provided no evidence for retrieval from a downstream compartment, a more stringent assay based on carbohydrate acquisition by O-glyc b(5) showed that b(5) gains access to enzymes catalyzing the first steps of O-glycosylation. These results suggest that b(5) slowly recycles between the ER and the cis-Golgi complex and that dynamic retrieval as well as retention are involved in sorting of tail-anchored proteins.  相似文献   

10.
Many endoplasmic reticulum (ER) proteins are known to be localized to the ER by a mechanism called retrieval, which returns the molecules that are exported from the ER to the Golgi apparatus back to the ER. Signals are required to be recognized by this retrieval system. In the work on yeast Saccharomyces cerevisiae, we have demonstrated that transmembrane domains of a subset of ER membrane proteins including Sec12p, Sec71p and Sec63p contain novel ER retrieval signals. For the retrieval of these proteins, a Golgi membrane protein, Rer1p, is essential (Sato et al., Mol. Biol. Cell 6 (1995) 1459–1477; Proc. Natl. Acad. Sci. USA 94 (1997) 9693–9698). To address the role of Rer1p in higher eukaryotes, we searched for homologues of yeast RER1 from Arabidopsis thaliana. We identified three cDNAs encoding Arabidopsis counterparts of Rer1p with an amino acid sequence identity of 39–46% to yeast Rer1p and named AtRER1A, AtRER1B, and AtRER1C1. AtRer1Ap and AtRer1Bp are homologous to each other (85% identity), whereas AtRer1C1p is less similar to AtRer1Ap and AtRer1Bp (about 50%). Genomic DNA gel blot analysis indicates that there are several other AtRER1-related genes, implying that Arabidopsis RER1 constitutes a large gene family. The expression of these three AtRER1 genes is ubiquitous in various tissues but is significantly higher in roots, floral buds and a suspension culture in which secretory activity is probably high. All the three AtRER1 cDNAs complement the yeast rer1 mutant and remedy the defect of Sec12p mislocalization. However, the degree of complementation differs among the three with that of AtRER1C1 being the lowest, again suggesting a divergent role of AtRer1C1p.  相似文献   

11.
12.
植物表达分泌蛋白的运输及定位   总被引:1,自引:0,他引:1  
分泌途径主要由内膜系统构成,内质网和高尔基体对于分泌蛋白的运输及定位具有重要作用。分泌蛋白的运输包括顺行途径和逆行途径。蛋白质通过质流和受体介导的途径运输到小泡中。在植物中,分泌蛋白的运输主要通过小泡和相连的小管来完成。分子伴侣和质量控制不仅能优化新合成蛋白的折叠和组装,而且去除了有折叠缺陷的蛋白。分泌蛋白的定位需要特定的信号肽,而高尔基体固有蛋白以依赖跨膜长度的方式,沿着分泌途径的细胞器分布。本文对植物表达分泌蛋白的分泌途径及定位、相关的分子伴侣和质量控制进行了综述。  相似文献   

13.
Summary A simplified method for isolating highly purified laterobasal membranes (LBM) from enterocytes is based on treatment of membranes with 8mm CaCl2 concentration in order to aggregate intracellular membrane contaminants. The resultant LBM showed an average 15-fold enrichment and constituted 8% of the original K-stimulated phosphatase in the initial crude homogenate. It showed typical LBM migration on counter-current distribution (CCD) and was essentially free of contamination with endoplasmic reticulum and Golgi membranes. This method is highly efficient and yields sufficient purified LBM to allow comprehensive analysis of enterocyte membrane events.  相似文献   

14.
15.
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.  相似文献   

16.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

17.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

18.
We describe the use of a secreted form of Aequoria victoria green fluorescent protein (secGFP) in a non-invasive live cell assay of membrane traffic in Arabidopsis thaliana. We show that in comparison to GFP-HDEL, which accumulates in the endoplasmic reticulum (ER), secGFP generates a weak fluorescence signal when transported to the apoplast. The fluorescence of secGFP in the apoplast can be increased by growth of seedlings on culture medium buffered at pH 8.1, suggesting that apoplastic pH is responsible, at least in part, for the low fluorescence intensity of seedlings expressing secGFP. Inhibition of secGFP transport between the ER and plasma membrane (PM), either by Brefeldin A (BFA) treatment or by genetic intervention results in increased intracellular secGFP accumulation accompanied by an increase in the secGFP fluorescence intensity. secGFP thus provides a valuable tool for forward and reverse genetic analysis of membrane traffic and endomembrane organisation in Arabidopsis. Using this assay for quantitative sublethal perturbation of secGFP transport, we identify a role for root hair defective 3 (RHD3) in transport of secreted and Golgi markers between the ER and the Golgi apparatus.  相似文献   

19.
Uso1 is a yeast essential protein that functions to tether vesicles in the ER-to-Golgi transport. Its recruitment to the ER-derived vesicles has been demonstrated in in vitro membrane transport systems using semi-intact cells. Here we report that the binding of Uso1 to specific membranes can be detected through simple sucrose density block centrifugation. The purified Uso1 protein binds to slowly sedimenting membranes generated from rapidly sedimenting P10 membranes. These membranes were produced dependent on ATP hydrolysis, contained COPII vesicle components, but had neither of the coat subunits or ER proteins, which indicates that they were representative of the uncoated ER-derived COPII vesicles. The slowly sedimenting membranes of different origins were physically linked when they were mixed in the presence of Uso1. The C-terminal acidic region was not required in membrane binding. The presence of membranes to which Uso1 could bind in the yeast cell lysate was detected using the current method.  相似文献   

20.
We investigated the relative distributional persistence of Golgi 'matrix' proteins and glycosyltransferases to an endoplasmic reticulum exit block induced by expression of a GDP-restricted Sar1p. HeLa cells were microinjected with plasmid encoding the GDP-restricted mutant (T39N) of Sar1p to block endoplasmic reticulum exit and then scored for the distribution of GM130 (Golgi m atrix protein of 130  kDa), a cis located golgin; p27, a member of the p24 family of proteins; giantin, a protein that interacts indirectly with GM130; and the Golgi glycosyltransferase, N-acetylgalactosaminyltransferase-2 (GalNAcT2). All of these proteins lost their compact, juxtanuclear distribution and displayed characteristics of endoplasmic reticulum/cytoplasmic accumulation with the same dependence on plasmid concentration. The kinetics of redistribution of GM130 and GalNAcT2 were identical. Expression of Sar1pT39N displaced the COPII coat protein Sec13p from endoplasmic reticulum exit sites consistent with disruption of these sites. This occurred without disturbing the overall distribution of endoplasmic reticulum membrane. Furthermore, the reassembly of a juxtanuclear Golgi matrix as assayed by the distribution of GM130 following washout of the Golgi disrupting drug, brefeldin A, was blocked by microinjected Sar1pT39N plasmids. We conclude that the persistence, i.e. stability and maintenance, of Golgi matrix distribution and its reassembly following drug disruption are exquisitely dependent on Sar1p activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号