首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epac and PKA: a tale of two intracellular cAMP receptors   总被引:1,自引:0,他引:1  
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.  相似文献   

2.
3.
In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) enhances the action of neuregulin, the most potent known mitogen for SCs, by synergistically increasing the activation of two crucial signaling pathways: ERK and Akt. However, the underlying mechanism of cross-talk between neuregulin and cAMP signaling remains mostly undefined. Here, we report that the activation of protein kinase A (PKA), but not that of exchange protein activated by cAMP (EPAC), enhances S-phase entry of SCs by synergistically enhancing the ligand-dependent tyrosine phosphorylation/activation of the neuregulin co-receptor, ErbB2-ErbB3. The role of PKA in neuregulin-ErbB signaling was confirmed using PKA inhibitors, pathway-selective cAMP analogs, and natural ligands stimulating PKA activity in SCs, such as adenosine and epinephrine. Two basic observations defined the synergistic action of PKA as "gating" for neuregulin-ErbB signaling: 1) the activation of PKA was not sufficient to induce S-phase entry or the activation of either ErbB2 or ErbB3; and 2) the presence of neuregulin was strictly required to ignite ErbB activation and thereby ERK and Akt signaling. However, PKA directly phosphorylated ErbB2 on Thr-686, a highly conserved intracellular regulatory site that was required for the PKA-mediated synergistic enhancement of neuregulin-induced ErbB2-ErbB3 activation and proliferation in SCs. The gating action of PKA on neuregulin-induced ErbB2-ErbB3 activation has important biological significance, because it insures signal amplification into the ERK and Akt pathways without compromising either the neuregulin dependence or the high specificity of ErbB signaling pathways.  相似文献   

4.
The sodium-independent anion exchanger pendrin is expressed in several tissues including the kidney cortical collecting duct (CCD), where it acts as a chloride/bicarbonate exchanger and has been shown to participate in the regulation of acid-base homeostasis and blood pressure. The renal sympathetic nervous system is known to play a key role in the development of salt-induced hypertension. This study aimed to determine whether pendrin may partly mediate the effects of β adrenergic receptors (β-AR) on renal salt handling. We investigated the regulation of pendrin activity by the cAMP/protein kinase A (PKA) signaling pathway, both in vitro in opossum kidney proximal (OKP) cells stably transfected with pendrin cDNA and ex vivo in isolated microperfused CCDs stimulated by isoproterenol, a β-AR agonist. We found that stimulation of the cAMP/PKA pathway in OKP cells increased the amount of pendrin at the cell surface as well as its transport activity. These effects stemmed from increased exocytosis of pendrin and were associated with its phosphorylation. Furthermore, cAMP effects on the membrane expression and activity of pendrin were abolished by mutating the serine 49 located in the intracellular N-terminal domain of pendrin. Finally, we showed that isoproterenol increases pendrin trafficking to the apical membrane as well as the reabsorption of both Cl(-) and Na(+) in microperfused CCDs. All together, our results strongly suggest that pendrin activation by the cAMP/PKA pathway underlies isoproterenol-induced stimulation of NaCl reabsorption in the kidney collecting duct, a mechanism likely involved in the sodium-retaining effect of β-adrenergic agonists.  相似文献   

5.
The delta-opioid receptor (DOR) belongs to the superfamily of G-protein-coupled receptors (GPCRs) with seven transmembrane domains, and its membrane trafficking is regulated by intracellular sorting processes involving its C-tail motifs, intracellular sorting proteins, and several intracellular signaling pathways. In the quiescent state, DOR is generally located in the intracellular compartments in central neurons. However, chronic stimulation, such as chronic pain and sustained opioid exposure, may induce membrane trafficking of DOR and its translocation to surface membrane. The emerged functional DOR on cell membrane is actively involved in pain modulation and opioid analgesia. This article reviews current understanding of the mechanisms underlying GPCRs and DOR membrane trafficking, and the analgesic function of emerged DOR through membrane trafficking under certain pathophysiological circumstances.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) is critical to cAMP- and cGMP-activated intestinal anion secretion and the pathogenesis of secretory diarrhea. Enterotoxins released by Vibrio cholerae (cholera toxin) and Escherichia coli (heat stable enterotoxin, or STa) activate intracellular cAMP and cGMP and signal CFTR on the apical plasma membrane of small intestinal enterocytes to elicit chloride and fluid secretion. cAMP activates PKA, whereas cGMP signals a cGMP-dependent protein kinase (cGKII) to phosphorylate CFTR in the intestine. In the jejunum, cAMP also regulates CFTR and fluid secretion by insertion of CFTR from subapical vesicles to the surface of enterocytes. It is unknown whether cGMP signaling or phosphorylation regulates the insertion of CFTR associated vesicles from the cytoplasm to the surface of enterocytes. We used STa, cell-permeant cGMP, and cAMP agonists in conjunction with PKG and PKA inhibitors, respectively, in rat jejunum to examine whether 1) cGMP and cGK II regulate the translocation of CFTR to the apical membrane and its relevance to fluid secretion, and 2) PKA regulates cAMP-dependent translocation of CFTR because this intestinal segment is a primary target for toxigenic diarrhea. STa and cGMP induced a greater than fourfold increase in surface CFTR in enterocytes in association with fluid secretion that was inhibited by PKG inhibitors. cAMP agonists induced a translocation of CFTR to the cell surface of enterocytes that was prevented by PKA inhibitors. We conclude that cAMP and cGMP-dependent phosphorylation regulates fluid secretion and CFTR trafficking to the surface of enterocytes in rat jejunum. small intestine; cystic fibrosis transmembrane conductance regulator; membrane traffic; phosphorylation  相似文献   

7.
cAMP-dependent protein kinase is targeted to discrete subcellular locations by a family of specific anchor proteins (A-kinase anchor proteins, AKAPs). Localization recruits protein kinase A (PKA) holoenzyme close to its substrate/effector proteins, directing and amplifying the biological effects of cAMP signaling.AKAPs include two conserved structural modules: (i) a targeting domain that serves as a scaffold and membrane anchor; and (ii) a tethering domain that interacts with PKA regulatory subunits. Alternative splicing can shuffle targeting and tethering domains to generate a variety of AKAPs with different targeting specificity. Although AKAPs have been identified on the basis of their interaction with PKA, they also bind other signaling molecules, mainly phosphatases and kinases, that regulate AKAP targeting and activate other signal transduction pathways.We suggest that AKAP forms a "transduceosome" by acting as an autonomous multivalent scaffold that assembles and integrates signals derived from multiple pathways. The transduceosome amplifies cAMP and other signals locally and, by stabilizing and reducing the basal activity of PKA, it also exerts long-distance effects. The AKAP transduceosome thus optimizes the amplitude and the signal/noise ratio of cAMP-PKA stimuli travelling from the membrane to the nucleus and other subcellular compartments.  相似文献   

8.
The ins and outs of Wingless signaling   总被引:11,自引:0,他引:11  
Signaling through the highly conserved Wingless/Wnt pathway plays a crucial role in a diverse array of developmental processes, many of which depend upon the precise regulation of Wingless/Wnt signaling levels. Recent evidence has indicated that the intracellular trafficking of Wingless/Wnt signaling components can result in significant changes in the level of signaling. Here, we examine three mechanisms through which intracellular trafficking might regulate Wingless signaling--the degradation of Wingless, its transport and the transduction of its signal. The intracellular trafficking of several Wingless/Wnt signaling components, including LRP5, LRP6, Dishevelled and Axin, as well as the functional implications of protein localization on Wingless/Wnt signaling, will be discussed.  相似文献   

9.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   

10.
Phosphorylation of the R domain is required for cystic fibrosis transmembrane conductance regulator (CFTR) channel gating, and cAMP/protein kinase A (PKA) simulation can also elicit insertion of CFTR into the plasma membrane from intracellular compartments (Bertrand, C. A., and Frizzell, R. A. (2003) Am. J. Physiol. 285, C1-C18). We evaluated the structural basis of regulated CFTR trafficking by determining agonist-evoked increases in plasma membrane capacitance (Cm) of Xenopus oocytes expressing CFTR deletion mutants. Expression of CFTR as a split construct that omitted the R domain (Deltaamino acids 635-834) produced a channel with elevated basal current (Im) and no DeltaIm or trafficking response (DeltaCm) upon cAMP/PKA stimulation, indicating that the structure(s) required for regulated CFTR trafficking are contained within the R domain. Additional deletions showed that removal of amino acids 817-838, a 22-amino acid conserved helical region having a net charge of -9, termed NEG2 (Xie, J., Adams, L. M., Zhao, J., Gerken, T. A., Davis, P. B., and Ma, J. (2002) J. Biol. Chem. 277, 23019-23027), produced a channel with regulated gating that lacked the agonist-induced increase in CFTR trafficking. Injection of NEG2 peptides into oocytes expressing split DeltaNEG2 CFTR prior to stimulation restored the agonist-evoked DeltaCm, consistent with the concept that this sequence mediates the regulated trafficking event. In support of this idea, DeltaNEG2 CFTR escaped from the inhibition of wild type CFTR trafficking produced by overexpression of syntaxin 1A. These observations suggest that the NEG2 region at the C terminus of the R domain allows stabilization of CFTR in a regulated intracellular compartment from which it traffics to the plasma membrane in response to cAMP/PKA stimulation.  相似文献   

11.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

12.
Intestinal epithelial cell differentiation is a complex process in which many different signaling pathways are likely involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to inhibit enterocyte differentiation; however, the mechanisms through which cAMP/PKA signaling modulates differentiation of human intestinal epithelial cells are still not well understood. Herein, we report that: (1) treatment of Caco-2/15 cells with 8Br-cAMP repressed sucrase-isomaltase and villin protein expression and strongly attenuated morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush border formation; (2) treatment of confluent Caco-2/15 cells with 8Br-cAMP led to a strong decrease in F-actin localized at cell-cell contact sites along with a reduced amount of E-cadherin and catenins, but not of ZO-1, at cell-cell interfaces concomitant with a decreased association of these proteins with the actin cytoskeleton; (3) inhibition of PKA by H89 prevented disruption of adherens junctions by extracellular calcium depletion; (4) treatment of Caco-2/15 cells with 8Br-cAMP prevented the recruitment and activation of p85/PI-3K to E-cadherin-mediated cell-cell contacts, an important event in the assembly of adherens junctions and differentiation of these cells; (5) E-cadherin appears to be phosphorylated on serine in vivo in a PKA-dependent mechanism. Conclusion: Our studies show that cAMP/PKA signaling negatively regulates adherens junction integrity as well as morphological and functional differentiation of intestinal epithelial cells.  相似文献   

13.
The recent discovery of Epac, a novel cAMP receptor protein, opens up a new dimension in studying cAMP-mediated cell signaling. It is conceivable that many of the cAMP functions previously attributed to cAMP-dependent protein kinase (PKA) are in fact also Epac-dependent. The finding of an additional intracellular cAMP receptor provides an opportunity to further dissect the divergent roles that cAMP exerts in different cell types. In this study, we probed cross-talk between cAMP signaling and the phosphatidylinositol 3-kinase/PKB pathways. Specifically, we examined the modulatory effects of cAMP on PKB activity by monitoring the specific roles that Epac and PKA play individually in regulating PKB activity. Our study suggests a complex regulatory scheme in which Epac and PKA mediate the opposing effects of cAMP on PKB regulation. Activation of Epac leads to a phosphatidylinositol 3-kinase-dependent PKB activation, while stimulation of PKA inhibits PKB activity. Furthermore, activation of PKB by Epac requires the proper subcellular targeting of Epac. The opposing effects of Epac and PKA on PKB activation provide a potential mechanism for the cell type-specific differential effects of cAMP. It is proposed that the net outcome of cAMP signaling is dependent upon the dynamic abundance and distribution of intracellular Epac and PKA.  相似文献   

14.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

15.
Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking,developmental signaling and lysosome biogenesis.Through its interaction with the Rab GTPases and their effectors,membrane lipids,molecular motors,the endocytic machinery and actin nucleation promoting factors,retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network(TGN) and the plasma membrane.In this review.I highlight recent progress in the understanding of relromer-medialed protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental,physiological and pathological processes.  相似文献   

16.
Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.  相似文献   

17.
The Shaker family potassium channel, Kv1.2, is a key determinant of membrane excitability in neurons and cardiovascular tissue. Kv1.2 is subject to multiple forms of regulation and therefore integrates cellular signals involved in the homeostasis of excitability. The cyclic AMP/protein kinase A (PKA) pathway enhances Kv1.2 ionic current; however, the mechanisms for this are not fully known. Here we show that cAMP maintains Kv1.2 homeostasis through opposing effects on channel trafficking. We found that Kv1.2 is regulated by two distinct cAMP pathways, one PKA-dependent and the other PKA-independent. PKA inhibitors elevate Kv1.2 surface levels, suggesting that basal levels of cAMP control steady-state turnover of the channel. Elevation of cAMP above basal levels also increases the amount of Kv1.2 at the cell surface. This effect is not blocked by PKA inhibitors, but is blocked by inhibition of Kv1.2 endocytosis. We conclude that Kv1.2 levels at the cell surface are kept in dynamic balance by opposing effects of cAMP.  相似文献   

18.
Sphingolipids are an important part of the plasma membrane and implicated in a multitude of cellular processes. However, little is known about the role of sphingolipids in an epithelial context and their potential influence on the activity of signaling pathways. To shed light on these aspects we analyzed the consequences of changing ceramide levels in vivo in the Drosophila wing disc: an epithelial tissue in which the most fundamental signaling pathways, including the Wnt/Wg signaling pathway, are well characterized.We found that downregulation of Drosophila’s only ceramide synthase gene schlank led to defects in the endosomal trafficking of proteins. One of the affected proteins is the Wnt ligand Wingless (Wg) that accumulated. Unexpectedly, although Wg protein levels were raised, signaling activity of the Wg pathway was impaired. Recent work has spotlighted the central role of the endocytic trafficking in the transduction of the Wnt signal. Our results underscore this and support the view that sphingolipid levels are crucial in orchestrating epithelial endocytic trafficking in vivo. They further demonstrate that ceramide/sphingolipid levels can affect Wnt signaling.  相似文献   

19.
Phosphatidylinositol (4,5) bisphosphate, [PtdIns(4,5)P2], is a signaling lipid involved in many important processes in animal cells such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels, and nuclear signaling pathways. In the last years PtdIns(4,5)P2 and its synthesizing enzyme, phosphatidylinositol phosphate kinase (PIPK), has been intensively studied in plant cells, revealing a key role in the control of polar tip growth. Analysis of the PIPK members from Arabidopsis thaliana, Oryza sativa and Physcomitrella patens showed that they share some regulatory features with animal PIPKs but also exert plant-specific modes of regulation. This review aims at giving an overview on the PIPK family from Arabidopsis thaliana and Physcomitrella patens. Even though their basic structure, modes of activation and physiological role is evolutionary conserved, modules responsible for plasma membrane localization are distinct for different PIPKs, depending on differences in physiological and/or developmental status of cells, such as polarized and non-polarized.  相似文献   

20.
cAMP signaling is a fundamental cellular process necessary for mediating responses to hormonal stimuli. In contrast to cAMP-dependent activation of protein kinase A (PKA), an important cellular target, far less is known on termination in cAMP signaling, specifically how phosphodiesterases (PDEs) facilitate dissociation and hydrolysis of bound cAMP. In this study, we have probed the dynamics of a ternary complex of PKA and a PDE–RegA with an excess of a PDE-nonhydrolyzable cAMP analog, Sp-cAMPS by amide hydrogen/deuterium exchange mass spectrometry (HDXMS). Our results highlight how HDXMS can be used to monitor reactions together with mapping conformational dynamics of transient signaling complexes. Our results confirm a two-state model for active RegA-mediated dissociation of bound cAMP. Further, our results reveal that Sp-cAMPS and RegA mediate mutually exclusive interactions with the same region of PKA and at specific concentrations of Sp-cAMPS, RegA is capable of blocking Sp-cAMPS reassociation to PKA. This provides a molecular basis for how PDEs modulate levels of intracellular cAMP so that PKA is better suited to responding to fluxes rather than constant levels of cAMP. This study underscores how HDXMS can be a powerful tool for monitoring reactions together with mapping conformational dynamics in signaling proteins. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号