首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient genetic transformation protocols and the regeneration of transgenic plants of Sugraone and Crimson Seedless grapevines (Vitis vinifera L.) were achieved from embryogenic calli co-cultured with low Agrobacterium tumefaciens densities. The sensitivity of embryogenic cultures to kanamycin, as well as the effect of Agrobacterium strains, C58(pMP90) or EHA105, and the bacterial concentration (0.06 or 0.2 at Optical Density OD600) on transformation efficiency were studied. Embryogenic cultures showed different kanamycin sensitivities and the total suppression of embryo differentiation at 20 and 50 mg/l kanamycin for Crimson Seedless and Sugraone, respectively. sgfp gene expression was evaluated in callus co-cultured with each bacterial strain. Although GFP transient expression was higher with A. tumefaciens EHA105 in both cultivars at the beginning of the culture, there were no significant differences 28 days post-inoculation. However, the concentration of Agrobacterium did affected transformation efficiency: 0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone. By following the optimised procedure, 21 and 26 independent transgenic plants were generated from Sugraone and Crimson Seedless respectively, three to five months post-infection. PCR analyses were carried out to verify the integration of the sgfp and nptII genes into grapevine genome and the stable integration of the sgfp gene was confirmed by Southern blot.  相似文献   

2.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars. It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for maximum transgenic production are required for each individual cultivar.  相似文献   

3.
Arabidopsis thaliana transformation with the floral dip method was improved by modifying the cell density and mode of application of theAgrobacterium inoculum. Drops of inoculum were applied 4 times to closed flower buds. The inoculum OD600 was increased from 0.8 to more than 2.0. These modifications improved reproducibility and increased transformation efficiencies to 2–3%.  相似文献   

4.
Winter jujube, a species that originated in China, is the most prominent elite variety of jujube (Zizyphus jujuba Mill.). Due to its economic value and its recalcitrance to improvements through traditional plant breeding approaches, genetic transformation techniques may have a great potential in providing the means to transfer one or more selected desirable traits into the plant genome. We reported here an improved protocol for the Agrobacterium-mediated transformation of shoot tips of winter jujube. We have identified a set of optimum transformation conditions that take into account Agrobacterium inoculum density, Agrobacterium incubation period, co-cultivation conditions, and vacuum (use of a vacuum pump to create a negative-pressure environment). The highest transformation frequency (5.2%) was obtained when the shoot-tip explants were infected for 10 min and co-cultured for 4 days with Agrobacterium at OD600 0.8 under a negative pressure of 0.5 × 105 Pa. PCR and southern blot analyses confirmed the presence of transgenic plants and the stable integration of the target gene into the genome of regenerated plants. A histochemical staining analysis for GUS activity in the transgenic shoot tips also validated the efficiency of the transformation system.  相似文献   

5.
Agrobacterium rhizogenes-mediated transformation has become a powerful tool for studying gene function and root biology due to its quick and simple methodology. This transformation method is particularly suitable for those plants, including legumes, whose transformation using Agrobacterium tumefaciens has been challenging. Although there are some reports on A. rhizogenes-mediated transformation of legumes to produce ‘composite’ plants, conditions influencing A. rhizogenes-mediated transformation of soybean [Glycine max (L.) Merr.] have not been yet fully investigated. To better understand A. rhizogenes-mediated root transformation in soybean, we have evaluated the impact of genotype, plant age for infection, bacterial inoculating concentration, inoculation temperature, and other factors on transformation of soybean. The results have shown that there are significant differences among soybean genotypes in their susceptibility to A. rhizogenes. Soybean cv. Zigongdongdou is the most susceptible to A. rhizogenes strain K599 among 10 genotypes tested. The effects of seedling age have been evaluated, and 1-day-old plantlets are found to be optimal for hairy root induction. There are no significant differences in hairy root induction for bacterial suspension from OD600 = 0.2 to OD600 = 1.2. Under 16 h photoperiod, hairy roots can be induced both at 23°C/20°C and 28°C/25°C, but not at 33°C/30°C as day/night temperature regimes. Using this transformation protocol, almost 100% of the composite plants formed hairy roots within 2 weeks, and based on GUS histochemical analysis, 94.2% transformation frequency is obtained. Transgene integration has been also confirmed by Southern blot analysis. D. Cao and W. Hou contributed equally to this work.  相似文献   

6.
Sonication-assisted Agrobacterium-mediated transformation (SAAT) tremendously improves the efficiency of Agrobacterium infection by introducing large numbers of microwounds into the target plant tissue. Using immature cotyledons of soybean as explants, we evaluated the effects of the following parameters on transient β-glucuronidase (GUS) activity: cultivars, binary vectors, optical density of Agrobacterium during infection, duration of sonication treatment, co-culture conditions, length of explant preculture and addition of acetosyringone during co-culture. The extent of tissue disruption caused by sonication was also determined. The highest GUS expression was obtained when immature cotyledons were sonicated for 2 s in the presence of Agrobacterium (0.11 OD600nm) followed by co-cultivation with the abaxial side of the explant in contact with the culture medium for 3 days at 27°C. The addition of acetosyringone to the co-culture medium enhanced transient expression. No differences were observed when different cultivars or binary vectors were used. Cotyledons sonicated for 2 s had moderate tissue disruption, while the longer treatments resulted in more extensive damage. Received: 1 October 1997 / Revision received: 18 February 1998 / Accepted: 13 March 1998  相似文献   

7.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for ramie [Boehmeria nivea (L.) Gaud.] based on the examinations of several factors affecting plant transformation efficiency. The effects of Agrobacterium cell density, acetosyringone, co-cultivation temperature, co-cultivation duration, co-cultivation photoperiod and pH on stable transformation were evaluated. Agrobacterium at a concentration of OD = 0.5–0.8 improved the efficiency of transformation. Concentration of acetosyringone at 50 mg/L during co-cultivation significantly increased transformation efficiency. Co-cultivation at 20°C, in comparison to 15, 25 and 28°C, consistently resulted in higher transformation frequencies. A relatively short co-cultivation duration (3 days) was optimal for ramie transformation. Co-cultivation medium at pH 5.9 and co-cultivation in darkness both improved the transformation efficiencies of ramie. An overall scheme for producing transgenic ramie is presented, through which an average transformation rate from 10.5 to 24.7% in five ramie varieties was obtained. Stable expression and integration of the transgenes were confirmed by histochemical GUS assay, kanamycin painting assay, PCR and Southern blotting. This optimized transformation system should be employed for efficient Agrobacterium-mediated transformation of ramie. An erratum to this article can be found at  相似文献   

8.
Small bud tips of 1–3 mm in length were taken from multiple shoot clumps that derived from immature inflorescence cultures of beet as recipient for the Agrobacterium-mediated transformation and transgenic plants were obtained from eight genotypes. The optimal genetic transformation protocol was established as followed: the buds were immersed in Agrobacterium suspension of OD600 =0.3–0.5 for 5–10 min, with vacuum infiltration (0.3–0.5 × 105 Pa) or supplemented with 0.01% Silwet L-77, co-cultured for 2–4 days and followed by 10-day culture on medium containing 100 mg l−1 cefotaxime, then the buds were selected on medium containing 10 mg l−1 hygromycin B for three consecutive generations. The percentage of hygromycin-resistant buds after three selections varied from 13.3 to 30.6% with genotypes. The results of PCR and further Southern blotting of genomic DNA of hygromycin-resistant buds or plants showed that the exogenous hpt and AtNHX1 gene had been integrated into the genomes of some transformed buds or plants. The transgenic buds or plants with AtNHX1 gene encoding Na+/H+ antiport on the vacuole membrane of Arabidopsis showed improved salt-tolerance than the controls. AtNHX1gene inherited in some transgenic lines as Mendelian segregation. This result revealed that it was feasible to improve salt-tolerance of beets by the introduction of AtNHX1 gene into cultured buds.  相似文献   

9.
An efficient Agrobacterium-mediated transformation system, from which transgenic tropical maize plants were directly generated without previous crosses with laboratory or temperate lines, was established. Experimental evaluations were focused on two main issues: (i) establishment of appropriate tissue culture conditions, which induced somatic embryogenesis from the scutellum-cells, and (ii) the delivery of T-DNA toward these cells. High rates of embryogenic-calli, mainly generated from the embryo-scutellum, were obtained when 15 mg l−1 AgNO3 were included into the N6-based induction medium; rates up to 19 plants per gram were regenerated from these induced calli. Regarding the Agrobacterium strains evaluated for their transformation capability on the tropical maize line LPC13 used here, best results were obtained from the EHA105 cells when applied at OD550 nm = 0.5–1.0. Physical microwounds before the Agro-infection proved to be an excellent way to promoting both the T-DNA transferring toward the embryo-scutellum and the increasing of rates of transient GUS expression. The highest frequencies of transient GUS expression corresponding to the scutellum-cells as well as the regeneration of whole transgenic plants emerged from them, were obtained using immature embryos wounded by bombarding at 80 lb/in2 followed for vacuum infiltration before and during the Agro-infection, respectively, or using embryos wounded by 5 s-sonication (without vacuum infiltration) before the Agro-infection. Transformation frequencies up to 5.41% and 6.82% were obtained from the Agro-infected embryos wounded by particle-bombardment and sonication, respectively. Analyses of the progenies confirmed the sexual transmission of the introduced genes and their stable expression.  相似文献   

10.
A number of factors that are known to influence genetic transformation were evaluated to optimizeAgrobacterium-mediated transformation of hypocotyl explants of cauliflower variety Pusa Snowball K-1. The binary vector p35SGUSINT mobilized intoAgrobacterium strain GV2260 was used for transformation and transient GUS expression was used as the basis for identifying the most appropriate conditions for transformation. Explant age, preculture period, bacterial strain and density were found to be critical determinants of transformation efficiency. Using the optimized protocol, the syntheticcryIA(b) gene was mobilized into cauliflower. Molecular analyses of transgenics established the integration and expression of the transgene. Insect bioassays indicated the effectiveness of the transgene against infestation by diamondback moth (Plutella xylostella) larvae.  相似文献   

11.
An improved protocol for efficient Agrobacterium-mediated transformation of grapevine (Vitis sp.) was developed through modification of cocultivation and subsequent washing procedures. It was determined that Agrobacterium-infected somatic embryos (SE) cocultivated on filter paper exhibited less browning and significantly higher transient GFP and GUS expression than those cultured on agar-solidified medium. Furthermore, such SE, when subjected to a prolonged washing period in liquid medium containing cefotaxime and carbenicillin, followed by another wash in similar medium with kanamycin added, exhibited significantly higher rates of stable transformation compared to previously-described procedures. Transgenic plant recovery was increased 3.5–6 Xs by careful excision of leafy cotyledons from SE that had been induced to germinate on MS medium containing 1 μM of BA. Southern blot analysis revealed the low copy number integration of transgenes in transgenic plants recovered using the improved protocol. These improved cocultivation and plant recovery procedures have been demonstrated to facilitate production of large populations of transgenic plants from V. vinifera ‘Merlot’, ‘Shiraz’ and ‘Thompson Seedless’ as well as Vitis hybrid ‘Seyval Blanc’.  相似文献   

12.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

13.
Regeneration of herbicide-tolerant black locust transgenic plants by SAAT   总被引:8,自引:0,他引:8  
A protocol based on SAAT (sonication-assisted Agrobacterium-mediated transformation) has been developed to obtain herbicide-resistant transgenic black locust (Robinia pseudoacacia L.) plants. Cotyledon explants were co-cultivated with Agrobacterium AGL1 strain carrying the pTAB16 plasmid (bar and gusA genes). The effects of bacterial concentration (OD550 of 0.3, 0.6, 0.8) and method of infection (sonication vs immersion) on bacterial delivery were determined by assaying cotyledons for transient -glucuronidase expression 3 days after infection. SAAT increases transient expression efficiency especially at an OD550 of 0.6. After determining bacterial concentration and infection method, other factors affecting transformation efficiency, such as explant preconditioning and period of time before applying selection, were tested. From these experiments, the preferred protocol for black locust cotyledon transformation should include sonication of preconditioned cotyledons in AGL1 suspension, coculture for 3 days with 100 µM acetosyringone and transfer to selection medium with 4 mg/l phosphinothricin and 150 mg/l timentin. Of the initial explants, 2% produced at least one transgenic shoot. Genetic transformation was confirmed by Southern hybridization, chlorophenol red assay and herbicide tolerance of the regenerated plants.Abbreviations AS Acetosyringone - BA N-(Phenylmethyl)-1H-purin-6-amine (benzyladenine) - CR Chlorophenol red - 2,4-D 2,4-Dichlorophenoxyacetic acid - GUS -Glucuronidase - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - PPT PhosphinothricinCommunicated by P. Ozias-Akins  相似文献   

14.
Genetic manipulation technologies have been limited in the halophyte Suaeda salsa L. due to the lack of an efficient transformation system. Here, we examined factors affecting transformation and developed an efficient transformation system at the cell level using S. salsa hypocotyl as starting material. S. salsa hypocotyl explants from 10-day-old seedlings were precultured for 2 days on a hygromycin (hyg)-free callus induction medium (CIM) and then inoculated with Agrobacterium tumefaciens suspension at a concentration of 0.5 at OD600 for 5–10 min. After cocultivation with A. tumefaciens for 4 days in the dark, followed by selection on carbenicillin (carb) for 3 days, explants were placed on CIM containing 10 mg l−1 hyg and 500 mg l−1 carb with three to four consecutive subcultures for up to 45 days. β-Glucuronidase assays showed an average transformation frequency of 62.89%. Gene integration was confirmed by polymerase chain reaction analysis and Northern blot analysis. To our knowledge, this is the first study to show Agrobacterium-mediated transformation in the C3 halophyte S. salsa.  相似文献   

15.
The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD600) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8–20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L−1) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.  相似文献   

16.
Yellow cosmos (Cosmos sulphureus Cav.) is a specific flowering plant and considered a suitable genetic engineering model. Agrobacterium-mediated plant transformation is commonly used for plant genetic engineering. Floral dip transformation is one of the plant genetic transformation methods, and it involves dipping flower buds into an Agrobacterium suspension. Studies on floral dip transformation of yellow cosmos have never been reported. Therefore, an efficient method in plant genetic engineering must be established. This study developed an effective and efficient floral dip transformation method for yellow cosmos.In this study, flower buds with sizes of 5–7 mm were used. Several parameters have been observed to optimize the floral dip method. These parameters included the optical density (OD600) of Agrobacterium culture, concentration of surfactant, and duration of flower bud dipping into the Agrobacterium suspension.The results showed that the floral dip method was most efficient when the flower buds were dipped into Agrobacterium suspension with OD600 = 0.8 and containing 5% sucrose and 0.1% Silwet L-77 for 30 s. This method enhanced the transformation efficiency at a rate of 12.78 ± 1.53%. The neomycin phosphotransferase II and green fluorescent protein genes with sizes of 550 and 736 bp, respectively, were confirmed by polymerase chain reaction. In addition, the transgenic plants were kanamycin resistant and fluorescent under ultraviolet light observation. This finding suggests that the proposed floral dip transformation provides new insights into efficient plant genetic engineering methods for yellow cosmos.  相似文献   

17.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

18.
Immature embryos have been used frequently as target tissues in the genetical transformation of wheat. However, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process, because of the need to cultivate the plants under controlled conditions. To circumvent this, we have employed mature embryos rather than immature ones as starter explants for Agrobacterium-mediated transformation of an elite wheat (Triticum aestivum L.) cultivar EM12. The neomycin phosphotransferase ІІ (npt ІІ) and β-glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimize the performance of T-DNA delivery. With the aid of an orthogonal design, the effect of four factors in combination on transfer DNA (T-DNA) delivery was studied. These factors were preculture duration, different kinds of inoculation, length of inoculation and co-culture condition. Optimal conditions for T-DNA delivery were obtained for mature embryos precultured for 14 days, followed by immersing in inoculation suspension with full strength Murashige and Skoog (MS) salts in darkness at 23–25°C for 3 h, and then co-culturing with Agrobacterium under desiccating condition in the dark at 23–24°C for 2–3 days. Complete analysis of transgene insertion demonstrated that the optimized method for Agrobacterium-mediated transformation of mature embryos of wheat was efficient and practicable.  相似文献   

19.
Li ZN  Fang F  Liu GF  Bao MZ 《Plant cell reports》2007,26(5):641-650
London plane tree (Platanus acerifolia Willd.) is an important tree in urban landscaping but it suffers from a number of negative traits which genetic engineering could be used to address. As with many woody species, P. acerifolia has appeared recalcitrant to genetic transformation. However, the recent development of a method for regenerating shoots from P. acerifolia leaf explants suggests that such material could be a target for gene-transfer. Using an Agrobacterium tumefaciens strain in which the T-DNA carries the histochemically detected reporter gene β-glucuronidase (GUS), we have followed the transfer of genes from Agrobacterium to leaf explants of Platanus acerifolia. Using this system, we have identified a set of inoculation and co-cultivation conditions (notably: the pre-treatment of leaf explants with 0.4 M mannitol, an inoculation period of 10 min, a bacterial OD600 of 0.8–1.0 and a co-cultivation period of 5 days) that permit a good frequency and reliability of transient gene-transfer. Optimum levels of antibiotics for bacterial elimination and kanamycin-resistant shoot regeneration were also established. By applying these parameters, we recovered eight independent stably transformed shoots that were kanamycin-resistant and contained the nptII T-DNA gene, as confirmed by PCR analysis. Furthermore, Southern blot analysis confirmed that, in at least five of these lines, the transgene was associated with high molecular weight DNA, so indicating integration into the plant genome.  相似文献   

20.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号