首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

2.
Lymphocytes of patients with gouty nephropathy were investigated using the criteria of sister chromatid exchanges (SCE) formation, rapidity of generation, virus reactivation, detection of the level of virus mutagenesis and DNA repair and replication synthesis in the experiments with some mutagens. Disorders, according to these criteria, were observed in the cells of all the patients. Cells of patients with gouty nephropathy may be used as a model to study DNA repair and replication mechanisms.  相似文献   

3.
Cell survival, single and double DNA strand breaks formation and removal, spontaneous and induced chromosome aberrations and sister chromatid exchange (SCE) levels in gamma-irradiated cells of patients with ataxia-telangiectasia (AT) were studied. Except SCE all of the above indexes of AT cells sensitivity, were higher, than in normal human cells, but lower, than it is commonly characteristic of AT cells in literature. A conclusion is that the analysed AT cells belong to the AT-variant form. Possible mechanisms of high radiosensitivity of AT cells, accompanied by radioresistance of DNA replication, are discussed. The authors suppose that the DNA repair defect in AT cells is not primary.  相似文献   

4.
Some of the restarting events of stalled replication forks lead to sister chromatid exchange (SCE) as a result of homologous recombination (HR) repair with crossing over. The rate of SCE is elevated by the loss of BLM helicase or by a defect in translesion synthesis (TLS). We found that spontaneous SCE levels were elevated approximately 2-fold in chicken DT40 cells deficient in Fanconi anemia (FA) gene FANCC. To investigate the mechanism of the elevated SCE, we deleted FANCC in cells lacking Rad51 paralog XRCC3, TLS factor RAD18, or BLM. The increased SCE in fancc cells required Xrcc3, whereas the fancc/rad18 double mutant exhibited higher SCE than either single mutant. Unexpectedly, SCE in the fancc/blm mutant was similar to that in blm cells, indicating functional linkage between FANCC and BLM. Furthermore, MMC-induced formation of GFP-BLM nuclear foci was severely compromised in both human and chicken fancc or fancd2 cells. Our cell survival data suggest that the FA proteins serve to facilitate HR, but not global TLS, during crosslink repair.  相似文献   

5.
The difference in efficiency of methylnitrosourea (MNU) and ethylnitrosourea (ENU) to induce SCE in early or late G1 was determined in synchronized murine salivary gland cells in vivo, as a measure of the capacity of this tissue to repair the lesions involved in SCE formation during G1. The repair during G1 was determined by treating the cells in early or late G1. Treatment was in the first cycle (G1 before incorporation of 5-bromodeoxyuridine (BrdU)) or in G1 of the second cycle (after a single round of BrdU incorporation). It was observed that 50% of the lesions induced by MNU that elicit SCE are repaired during G1. BrdU incorporation into DNA increases the sensitivity of the cell to SCE induction by MNU nearly 40%; however under this circumstance a slightly lower SCE frequency was observed in the cells exposed to MNU at early G1, indicating that during G1 only few lesions are repaired. The ENU-induced DNA-lesions involved in SCE production are nearly 100% persistent along G1; besides, a slight but significantly higher SCE frequency was observed in cells exposed at early G1, suggesting the formation of SCE-inducing lesions during G1. BrdU incorporation to DNA sensitizes the cell to SCE induction by ENU, increasing the SCE frequency to nearly to a 40%, although these additional lesions involved in SCE induction seem to be susceptible to repair during G1.  相似文献   

6.
Repair disorders of DNA damage induced by gamma-radiation and 4-nitroquinoline-1-oxide treatment in cultivated lymphocytes of patients with schizophrenia. 13 criteria were used for estimation of repair activity (reactivation of viral host cells) repair synthesis, reparation of DNA breaks, formation of spontaneous and induced sister chromatid exchanges.  相似文献   

7.
The roles of DNA crosslink and its repair in the induction of sister-chromatid exchanges (SCEs) were studied in normal, xeroderma pigmentosum (XP) complementation group A, and Fanconi's anemia (FA) fibroblasts after treatment with mitomycin C (MC) or decarbamoyl mitomycin C (DMC) for 1 h. FA strains were 5—30-fold more sensitive to MC killing than normal cells, but normally responded to DMC killing. XP group-A cells were twice and only slightly more sensitive to DMC and MC killings, respectively, than normal cells. The induction rate of immediate SCEs by MC was 1.7 times higher, despite a normal SCE rate by DMC, in FA strains than that in normal cells. Alternatively, SCE rates by DMC and MC were 6 times and only 1.3 times higher, respectively, in XP cells than in normal cells. In normal cells, the reduction of MC-induced SCEs as a function of repair time followed a biphasic curve of the first rapid (half-life, 2 h) and the second slow (half-life, 14 h) components. Such components corresponded exactly to the first half-excision and the second slow repair processes of molecular crosslink repair. In MC-induced SCEs, FA17JTO cells exhibited only the slow reduction component without the first rapid component and a higher saturation level in the time-dependent reduction in SCEs. This indicates that SCEs are produced by crosslinks remaining unrepaired for long times (24—48 h) after treatment of FA cells. Conversely, XP group-A cells capable of the first half-excision manifested the first rapid reduction in SCEs, although the second component declined at the slowest rate (half-life, 48 h) owing to a defect in the second mono-adduct repair. The reduction in DMC-induced SCEs followed only the slow component. Thus, these results demonstrate that crosslink can be the lesion leading to SCE, and the MC-induced SCE frequency is higher in FA cells than in normal cells. In the FA20JTO strain, such a repair defect seemed to be less than in FA17JTO cells, judged from the survival and SCE characteristics.  相似文献   

8.
We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.  相似文献   

9.
Summary Twin and single sister chromatid exchanges (SCEs) induced by short treatments with mitomycin C (MC) and 4,5,8-trimethylpsoralen (TMP)-plus-near ultraviolet light (NUV) were analyzed in colcemid-induced endoreduplicated normal human and typical Fanconi's anemia (FA) fibroblasts with diplochromosomes. The induction rate of twin SCEs that had occurred in the first cycle (S1) after the treatment was 1.7–2.4 times higher in FA cells than in normal cells. The induction rate of single SCEs that had arisen during the second cycle (S2) long after the treatment was also much higher, though less than the twin SCE rate, in FA cells than the almost neglible rate after repair of cross-links and monoadducts in normal cells. These results in FA cells, which specifically lack the first half-excision step of the two-step cross-link repair but retain the normal monoadduct repair, indicate that MC or TMP cross-links remaining unrepaired are indeed responsible for higher inductions of twin (S1 exchange) and single SCEs (S2 exchange). Thus, these findings indicate that Shafer's model of replication bypass for cross-link-induced SCE, which predicts greatly reduced twin SCE formation in FA cells due to half cancellation, is apparently inadequate as such. We present three plausible models, incorporating the ordinary replication model, random unilateral cross-link transfer, and chromatid breakage/reunion, that can account for the probabilistic inductions of single and twin SCEs and even for no SCE formation.This work was supported in part by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture, Japan  相似文献   

10.
The frequency of sister-chromatid exchanges (SCE) was studied in peripheral blood lymphocytes from a xeroderma pigmentosum (form II, XPII) patient. The cells were irradiated with UV or X-rays. In some experiments novobiocin (NB), inhibitor of topoisomerase II, or caffeine (CA), inhibitor of DNA repair were added to the cultures. The level of spontaneous SCE in the patient's lymphocytes was found to be significantly increased in comparison to that in the cells from normal donors. The inhibitors and UV-light caused a rise in the frequency of SCE in the cells taken from normal donors and except for NB, in the lymphocytes from the patient XPII. X-Rays did not increase SCE frequency in normal lymphocytes and lowered it in the patient's cells. SCE frequency rose when inhibitors of DNA replication and repair were used in combination with mutagens.  相似文献   

11.
The induction of virus synthesis and sister chromatid exchange (SCE) formation was investigated in several mammalian cell lines. Ultraviolet light co-induced the production of virus and SCEs in Simian virus 40 (SV40) transformed hamster cells. Post-irradiation treatment with caffeine enhanced virus induction, though it caused a smaller, less consistent elevation of SCE formation. Co-induction of oncovirus synthesis and SCEs was also observed in three murine cell lines exposed to increasing concentrations of 5-bromodeoxyuridine. These and previous data demonstrate a correlation between the induction of virus synthesis and SCE formation in rodent cells exposed to several agents, although inter-agent variation in the correlation may reflect differences between the two processes.  相似文献   

12.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


13.
The relationship between cytotoxicity, sister-chromatid exchanges (SCE) and the repair of DNA crosslinks was studied in mouse 10T1/2 cells during confluent holding following either acute or protracted MMC treatment. No cytotoxic effects were observed with increasing doses of MMC until SCE frequencies 1.8 times background levels were induced. Protracted MMC treatments were less cytotoxic than acute MMC exposure at doses which yielded similar frequencies of SCE. The kinetics of recovery during confluent holding in acute MMC-treated cells were similar for cytotoxicity and the repair of DNA interstrand crosslinks. These results suggest that a type of non-lethal DNA damage which causes SCE may persist for long periods of time in MMC-treated cells. This non-lethal damage may accumulate during protracted MMC exposure while damage leading to cell killing is repaired.  相似文献   

14.
The present research was mainly focused on characterizing the formation of sister-chromatid exchanges at both optimal and supra-optimal growth temperatures. Under these conditions (25, 30 and 35 degrees C) meristem cells of Allium cepa L. exhibited a roughly constant cell-cycle time, and modifications in other cell-cycle parameters were negligible. Second-division chromosomes of cells incubated at 30 and 35 degrees C showed increased SCE yields as compared with those detected in cells maintained at the optimal temperature (25 degrees C). When cells with unifilarly BrdUrd-substituted DNA was damaged by irradiation with visible light, we obtained almost the same SCE yields at the various temperatures tested. We suggest that this production of SCEs could be the result of a reduced number of lesions produced by light (perhaps as a consequence of reduced intracellular free oxygen at high temperature) and/or of an increased efficiency in the repair capacity of the cells at these temperatures. The analysis of SCE formation in undamaged cells incubated at different temperatures during BrdUrd treatment has shown that the optimal growth temperature appears to be the experimental condition in which the cells are able to exhibit the lowest frequency of SCE.  相似文献   

15.
Molecular mechanisms of sister-chromatid exchange   总被引:1,自引:0,他引:1  
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.  相似文献   

16.
Hypersensitivity of Bloom's syndrome fibroblasts to N-ethyl-N-nitrosourea   总被引:5,自引:0,他引:5  
Fibroblast cells from two Japanese patients with Bloom's syndrome (BS) and normal donors were studied for the inactivation of colony-forming ability and the induction of sister-chromatid exchanges (SCEs) after N-ethyl-N-nitrosourea (ENU) treatment. The reduction of ENU-induced SCEs as a function of post-treatment incubation time was also compared between BS and normal fibroblasts. BS cells were approximately 4 times more sensitive than normal cells to the lethal effect of ENU and remarkably hypersensitive to the SCE induction by ENU. The post-treatment incubation of ENU-treated normal cells in the fresh medium resulted in a time-dependent decrease of the SCE level until 6 h after which time the SCE level remained the plateau of about 50% of the initial level. In contrast, the ENU-induced SCEs in BS cells decreased much more slowly with post-treatment incubation time and its half life was 24 h. These results collectively support the view that BS cells may be defective in the rapid repair of certain type(s) of DNA damages induced by ENU.  相似文献   

17.
5-Bromodeoxyuridine (BrdU)-induced sister chromatid exchanges (SCEs) are mainly determined during replication on a BrdU-substituted template. The BrdU, once incorporated, is rapidly excised as uracil (U), and the gap is repaired with the incorporation of BrdU from the medium, which leads to further repair. During the second S period in BrdU medium, this process continues as the strand acts as template. Experiments suggest that 3-amino-benzamide (3AB) delays the ligation of the gaps formed after U excision, resulting in enhanced SCE levels during the second cycle of BrdU incorporation. When normal templates of G1 cells are treated before BrdU introduction with methyl methanesulphonate (MMS), 3AB in the first cycle doubles the MMS-induced SCEs but has no effect on them during the second cycle. When the BrdU-substituted template is treated with MMS in G1 of the second cycle, 3AB again doubles the SCEs due to MMS and also enhances the SCEs resulting from delays in ligation of the gaps following U excision in the BrdU-substituted template. The repair processes of MMS lesions that are sensitive to 3AB and lead to SCEs take place rapidly, while the repair process of late repairing lesions that lead to SCEs appear to be insensitive to 3AB. A model for SCE induction is proposed involving a single-strand break or gap as the initial requirement for SCE initiation at the replicating fork. Subsequent events represent natural stages in the repair process of a lesion, ensuring replication without loss of genetic information. G1 cells treated with methylnitrosourea (MNU) and grown immediately in BrdU medium rapidly lose the O6-methylguanine from their DNA and the rate of loss is BrdU-dose dependent. The rapid excision of the U lesions can explain the effect of BrdU concentration on SCE reduction following both MNU or MMS treatment.  相似文献   

18.
The role of DNA repair mechanisms in the induction of sister chromatid exchanges (SCE) after exposure to ultraviolet radiation was investigated in xeroderma pigmentosum cells. Cells from different excision-deficient XP strains, representing the 5 complementation groups in XP, A, B, C, D and E, and from excision-proficient XP variant strains were irradiated with low doses of UVR (0-3.5 J/m2). The number of SCE was counted after two cycles in the presence of BUdR. In cells of the complementation groups A, B, C and D the number of SCE was significantly higher than in UV-exposed control cells. The frequencies of SCE in group E cells and in XP varient cells were not different from those in control cells. Treatment with caffeine (0-200 microgram/ml) did not result in a different response of variant cells compared with normal cells. A simple correlation between SCE frequency and residual excision-repair activity was not observed. The response of the excision-repair deficient cells suggest that unrepaired damage, produced by UVR is involved in the production of SCE.  相似文献   

19.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

20.
It has been considered by some workers that sister-chromatid exchange (SCE) frequencies are elevated in patients with scleroderma and systemic lupus erythematosus (SLE). However, these observations were based on limited numbers of patients. Other have postulated the presence of a defect in DNA repair in cells from patients with various connective tissue diseases, including scleroderma and SLE. We report our findings from a large survey of SCE frequencies in patients with connective tissue diseases. Their diagnoses are scleroderma, SLE, rheumatoid arthritis, juvenile chronic arthritis, Behcet's syndrome and polyarteritis nodosa. These patients had never received cytotoxic drugs. Healthy individuals, hospital patients with diagnoses other than connective tissue disease and relatives of patients with scleroderma have been used as controls. The results have been analysed by generalized linear modelling, and we have shown that patients with SLE and Behcet's syndrome and controls with viral infections have elevated SCE frequencies, both before and after adjustments have been made for the effect on SCEs of an individual's age, smoking habits, sex and race. The SCEs of patients with scleroderma and their relatives were normal. SCE frequencies increased with age by 4% per decade and the SCE frequencies of smokers were approximately 12% higher than those of nonsmokers of similar age. The sex of an individual did not significantly affect SCEs but individuals from the Middle East were found to have lower counts than those originating from other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号