首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutant strain am126 was isolated, using the direct selection procedure, after nitrous acid mutagenesis. It produced neither measurable NADP-dependent glutamate dehydrogenase (GDH) nor immunologically cross-reacting material. That the am126 strain produced some form of GDH product was shown by the fact that it complemented several other am mutant strains. The GDH formed by complementation between am126 and each of two other am mutants was relatively thermolabile, but could not be distinguished from wild-type GDH formed by electrophoresis in polyacrylamide gels. This, together with the relatively high yield of the complementation enzymes, suggest that the am126 product is a polypeptide chain not grossly abnormal in structure. The spontaneous revertant frequency was between 0.3 and 3 prototrophic revertants per 10(5) live cells. This frequency was at least 40 times greater than that for am19, which had the second highest spontaneous revertant frequency among the mutants tested. Neither meiosis nor mutagenesis increased the revertant frequency, nor did incubation at elevated temperatures lower it. Sixty-eight revertant strains were examined for thermostability of their GHD. All appeared to be identical to wild type. Seven of the revertant strains were also tested for instability with regard to forward mutation to am auxtrophy. None was found to be unstable. Models for the genetic instability of the am126 mutation are discussed.  相似文献   

2.
A further series of mutant am alleles, encoding potentially active NADP-specific glutamate dehydrogenase (GDH) and capable of complementation in heterocaryons, have been characterized with respect to both GDH properties and DNA sequence changes. Several mutants previously studied, and some of their same-site or second-site revertants, have also been sequenced for the first time. We present a summary of what is known of the properties of all am mutants that have been defined at the sequence level.  相似文献   

3.
Propionyl-CoA carboxylase (PCC) deficiency is an inherited metabolic disorder showing considerable variability of expression. We have investigated the possibility that there is a genetic basis for the clinical heterogeneity in this disorder by examining complementation in Sendai virus mediated heterokaryons of mutant fibroblast strains. Restoration of PCC activity was monitored in individual multinucleate cells in situ using a radioautographic procedure which detects the incorporation of 14C-propionate into trichloracetic acid precipitable material. Each mutant strain incorporated negligible amounts of radioactivity compared to control strains. Activity was not restored when different mutants were mixed without virus or when homokaryons were produced by self-fusion. Seven mutant strains were fused in all pairwise combinations and examined for increased 14C-propionate incorporation in heterokaryons. Two main complementation groups were revealed. One group was composed of three mutants. The other was a complex group composed of four mutants in which intragroup complementation was demonstrated. Two mutants showing excellent complementation by radioautography were examined for complementation by the direct assay of PCC ACTIVITY. The enzyme activity of virus-treated preparations with 23% multinucleate cells was 183 U (pmol/min/mg protein) compared to 16 U for the untreated mixture (normal range 450-850 u). We conclude that PCC deficiency resulted from mutations of heterogeneous origin, although the classification of mutants into complementation groups did not correlate with patterns of clinical heterogeneity.  相似文献   

4.
A glycine-resistant Neurospora crassa mutant (am-132;glyr), derived from the am-132 mutant, was isolated and characterized. [am-132 itself has a deletion in the structural gene for NADP-dependent glutamate dehydrogenase (GDH).] This new mutation also conferred resistance to serine and methionine sulphoximine (MS), which are inhibitors of glutamine synthetase (GS). In addition, the mutant obtained grew better on ammonium than the am-132 parental strain. Resistance to glycine was not due to increased synthesis of glutamine by an altered or induced GS, nor to increased glutamate synthesis by induction of the catabolic NAD-dependent GDH, nor to NADH-dependent glutamate synthase (GOGAT), which was as sensitive to inhibitors as the GOGAT from the parental strain. The glycine-resistance mutation lowered but did not abolish the carbon flow; this resulted in a lower content of tricarboxylic acid cycle intermediates. GOGAT activity was inhibited in vitro by several organic acids and methionine sulphone (MSF). The higher growth rate of the glycine-resistant mutant on ammonium or on ammonium plus glycine, serine or MS was explained by an increased capacity of GOGAT to synthesize glutamate in vivo due to a lower content of inhibitory tricarboxylic acid cycle intermediates; the higher glutamate content overcomes the effect of the GS inhibitors and explains the MSF resistance of the mutant.  相似文献   

5.
The biochemistry of interallelic complementation within the Salmonella typhimurium hisD gene was investigated by in vitro protein complementation of mutant histidinol dehydrogenases (EC 1.1.1.23). Double-mutant strains were constructed containing the hisO1242 (constitutive overproducer) attenuator mutation and selected hisDa or hisDb mutations. Extracts from such hisDa986 and hisDb1799 mutant cells failed to show histidinol dehydrogenase activity but complemented to produce active enzyme. Inactive mutant histidinol dehydrogenases were purified from each of the two mutants by ion-exchange chromatography. Complementation by the purified mutant proteins required the presence of 2-mercaptoethanol and MnCl2, and protein-protein titrations indicated that heterodimers were strongly preferred in mixtures of the complementary mutant enzymes. Neither mutant protein showed negative complementation with wild-type enzyme. The Vmax for hybrid histidinol dehydrogenase was 11% of that for native enzyme, with only minor changes in Km values for substrate or coenzyme. Both purified mutant proteins failed to catalyze NAD-NADH exchange reactions reflective of the first catalytic step of the two-step reaction. The inactive enzymes bound 54Mn2+ weakly or not at all in the presence of 2-mercaptoethanol, in contrast to wild-type enzyme which bound 54Mn2+ to 0.6 sites per monomer under the same conditions. The mutant proteins, like wild-type histidinol dehydrogenase, behaved as dimers on analytical gel filtration chromatography, but dissociated to form monomers in the presence of 2-mercaptoethanol. This effect of 2-mercaptoethanol was prevented by low levels of MnCl2. It thus appears that mutant histidinol dehydrogenase molecules bind metal ion poorly. The complementation procedure may allow for formation of a functional Mn2+-binding site, perhaps at the subunit interface.  相似文献   

6.
The am1 and am3 mutational variants of the Neurospora crassa NADP-specific glutamate dehydrogenase show complementation activity in hybrid hexamers. A freeze-thaw hybridization method was used to construct hybrids from purified enzymes and the products were separated into species of different monomer ratio by affinity chromatography. Hexamers with am1:am3 ratios of 1:5, 2:4, 3:3, 4:2 and 5:1 were all recovered as resolved or partially resolved peaks in quantities approximating to a binomial distribution. Reassociation of monomers during the hybridization process was random, except for some differential loss of am3 protein by precipitation and an apparent absence of reassociated am1 homohexamers. Complementation activity was shown by hybrids of all five monomer ratios, owing to activation of am3 monomers by conformational constraints arising from the intrinsically inactive am1 monomers. The activating effect of such constraints was greatest in hexamers containing only a single am1 monomer and least in the 5 am1:1am3 species. When fully activated by L-glutamate all am3 monomers were equivalent in intrinsic catalytic activity, irrespective of the number of am1 monomers per hexamer.  相似文献   

7.
Induction and Repression of Nitrate Reductase in Neurospora crassa   总被引:7,自引:4,他引:3       下载免费PDF全文
Synthesis of wild-type Neurospora crassa assimilatory nitrate reductase is induced in the presence of nitrate ions and repressed in the presence of ammonium ions. Effects of several Neurospora mutations on the regulation of this enzyme are shown: (i) the mutants, nit-1 and nit-3, involving separate lesions, lack reduced nicotinamide adenine dinucleotide (NADPH)-nitrate reductase activity and at least one of three other activities associated with the wild-type enzyme. The two mutants do not require the presence of nitrate for induction of their aberrant nitrate reductases and are constitutive for their component nitrate reductase activities in the absence of ammonium ions. (ii) An analog of the wild-type enzyme (similar to the nit-1 enzyme) is formed when wild type is grown in a medium in which molybdenum has been replaced by vanadium or tungsten; the resulting enzyme lacks NADPH-nitrate reductase activity. Unlike nit-1, wild type produced this analog only in the presence of nitrate. Contaminating nitrate does not appear to be responsible for the observed mutants' activities. Nitrate reductase is proposed to be autoregulated. (iii) Mutants (am) lacking NADPH-dependent glutamate dehydrogenase activity partially escape ammonium repression of nitrate reductase. The presence of nitrate is required for the enzyme's induction. (iv) A double mutant, nit-1 am-2, proved to be an ideal test system to study the repressive effects of nitrogen-containing metabolites on the induction of nitrate reductase activity. The double mutant does not require nitrate for induction of nitrate reductase, and synthesis of the enzyme is not repressed by the presence of high concentrations of ammonium ions. It is, however, repressed by the presence of any one of six amino acids. Nitrogen metabolites (other than ammonium) appear to be responsible for the mediation of "ammonium repression."  相似文献   

8.
It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis.  相似文献   

9.
Approximately 20% of the tryptophan synthetase mutants (tr(5)) of Saccharomyces cerevisiae retain activity in one of the half reactions catalyzed by this enzyme and have been identified as indole-accumulating or indole-utilizing tr(5) mutants by complementation tests. Ten indole-accumulating and six indole-utilizing mutants have been studied. For the half reactions they catalyze, these partially active mutants have from about one-half to twice the specific activities of the wild-type enzyme. Indole-accumulating mutant enzymes showed varying responses to pyridoxal phosphate and serine in the assay mixture. The partially active mutants were further characterized by their patterns of allelic complementation and their distribution on the fine-structure map of the locus. It was concluded that these mutants define two distinct functional regions of the tr(5) locus, corresponding to the two half reactions.  相似文献   

10.
Neurospora crassa cells require glutamate synthase activity for growth under ammonium-limiting conditions. Despite the physiological importance of glutamate synthase, little is known about the genetics of its expression. To identify the glutamate synthase structural gene, we isolated three new mutants lacking this activity. All mutations are recessive to the wild-type allele and belong to the same complementation group as the previously described en(am)-2 (C24) mutation. Two lines of evidence indicate that en(am)-2 is the structural gene for glutamate synthase in N. crassa. The en(am)-2+ gene shows a gene dosage effect on enzyme activity, and some mutants lacking glutamate synthase activity have cross-reacting material. These data suggest that the mutations are located in the structural gene for N. crassa glutamate synthase.  相似文献   

11.
Although the structure of glutamate dehydrogenase (GDH) has been reported from various sources including mammalian GDH, there are conflicting views regarding the location and mechanism of actions of the coenzyme binding. We have expanded these speculations by photoaffinity labeling and cassette mutagenesis. Photoaffinity labeling with a specific probe, [(32)P]nicotinamide 2-azidoadenosine dinucleotide, was used to identify the NAD(+) binding site within human GDH encoded by the synthetic human GDH gene and expressed in Escherichia coli as a soluble protein. Photolabel-containing peptides generated with trypsin were isolated by immobilized boronate affinity chromatography. Photolabeling of these peptides was most effectively prevented by the presence of NAD(+) during photolysis, demonstrating a selectivity of the photoprobe for the NAD(+) binding site. Amino acid sequencing and compositional analysis identified Glu(279) as the site of photoinsertion into human GDH, suggesting that Glu(279) is located at or near the NAD(+) binding site. The importance of the Glu(279) residue in the binding of NAD(+) was further examined by cassette mutagenesis with mutant enzymes containing Arg, Gly, Leu, Met, or Tyr at position 279. The mutagenesis at Glu(279) has no effects on the expression or stability of the different mutants. The K(m) values for NAD(+) were 10-14-fold greater for the mutant GDHs than for wild-type GDH, whereas the V(max) values were similar for wild-type and mutant GDHs. The efficiency (k(cat)/K(m)) of the mutant GDH was reduced up to 18-fold. The decreased efficiency of the mutants results from the increase in K(m) values for NAD(+). In contrast to the K(m) values for NAD(+), wild-type and mutant GDHs show similar K(m) values for glutamate, indicating that substitution at position 279 had no appreciable effect on the affinity of enzyme for glutamate. There were no differences in sensitivities to ADP activation and GTP inhibition between wild-type and mutant GDH, suggesting that Glu(279) is not directly involved in allosteric regulation. The results with photoaffinity labeling and cassette mutagenesis studies suggest that Glu(279) plays an important role for efficient binding of NAD(+) to human GDH.  相似文献   

12.
Roberts, D. B. (University of Cambridge, Cambridge, England). Immunochemical and enzymatic studies on glutamate dehydrogenase and a related mutant protein from Neurospora crassa. J. Bacteriol. 91:1888-1895. 1966.-When an investigation was made of the inhibition of Neurospora glutamate dehydrogenase by bivalent and univalent antibodies, it was shown that the enzyme inhibition is not complete even with excess antibodies. The residual activity was some three times greater with bivalent antibodies, in spite of the observation that the ratio of inhibiting antibodies to catalytic sites was 2:1 for both types of antibody. Substrates did not affect the inhibition of enzyme activity, nor did antibodies affect the K(m) for either substrate. An allosteric mechanism for the inhibition of glutamate dehydrogenase by antibodies is proposed. It was also demonstrated that the mutant protein am-3 can be activated, to show glutamate dehydrogenase activity, by a number of activators. The requirement for the activation was the presence of a carboxymethyl group. The data suggest that the nonactivated protein has two combining sites for l-glutamate: the catalytic and activating sites. The wild-type enzyme has only one of these sites. Because the activating site is distinct from the catalytic site, an allosteric mechanism was postulated for activation. Inhibition of am-3 activity by antibodies is achieved either by a mechanism similar to the inhibition of wild-type activity or by the antibodies preventing the activation of the mutant protein. The am-3 protein can be activated by antibodies. Consequently, there appeared to be a relation the phenomena of enzyme inhibition and am-3 activation by antibodies; i.e., they alter the configuration of the catalytic site. This alteration was necessary for the activation of am-3, but inhibited the activity of the wild-type enzyme.  相似文献   

13.
alpha-Aminoadipate-semialdehyde dehydrogenase catalyzes the conversion of alpha-aminoadipate to alpha-aminoadipate-semialdehyde in the biosynthetic pathway of lysine in yeasts and molds. Mutants belonging to lys2 and lys5 loci of Saccharomyces cerevisiae lacked the alpha-aminoadipate-semialdehyde dehydrogenase activity. Complementation in vitro was demonstrated by combining the extracts from different lys2 and lys5 mutants. Some of the revertants of lys2 and lys5 mutants exhibited lower specific activity and higher thermolability of alpha-aminoadipate-semialdehyde dehydrogenase than the enzyme from wild-type cells. The enzyme was partially purified from wild-type cells and the molecular weight of the enzyme was estimated on a Sephacryl S-300 column at 180,000. Results from the revertant analysis and in vitro complementation indicated LYS2 and LYS5 as structural genes, each encoding a subunit of this large enzyme.  相似文献   

14.
The genetic locus glt, encoding glutamate synthase from Rhizobium meliloti 1021, was selected from a pLAFR1 clone bank by complementation of the R. meliloti 41 Glt- mutant AK330. A fragment of cloned DNA complementing this mutant also served to complement the Escherichia coli glt null mutant PA340. Complementation studies using these mutants suggested that glutamate synthase expression requires two complementation groups present at this locus. Genomic Southern analysis using a probe of the R. meliloti 1021 glt region showed a close resemblance between R. meliloti 1021, 41, and 102f34 at glt, whereas R. meliloti 104A14 showed many differences in restriction fragment length polymorphism patterns at this locus. R. meliloti 102f34, but not the other strains, showed an additional region with sequence similarity to glt. Insertion alleles containing transposable kanamycin resistance elements were constructed and used to derive Glt- mutants of R. meliloti 1021 and 102f34. These mutants were unable to assimilate ammonia and were Nod+ Fix+ on alfalfa seedlings. The mutants also showed poor or no growth on nitrogen sources such as glutamate, aspartate, arginine, and histidine, which are utilized by the wild-type parental strains. Strains that remained auxotrophic but grew nearly as well as the wild type on these nitrogen sources were readily isolated from populations of glt insertion mutants, indicating that degradation of these amino acids is negatively regulated in R. meliloti as a result of disruptions of glt.  相似文献   

15.
We have previously classified 35 of our respiration-deficient mutants into seven complementation groups and one "overlapping" mutant which does not complement mutants from groups I and II. In this paper we report on the biochemical characterization of representatives of complementation groups I, II, VII, and the "overlapping" mutant. We show that these mutants all have a defect in complex I of the electron-transport chain. The general features of these mutants are: (1) a low rate of O2 consumption in whole cells; (2) a low rate of release of 14CO2 from [2-14C] pyruvate, [1-14C] pyruvate, and [3-14C] beta-hydroxybutyrate; (3) a low rate of release of 14CO2 from [5-14C] glutamate and [1-14C] glutamate in mutants from groups II, VII, and the "overlapping" mutant, whereas a significant amount of 14CO2 is released in mutants from group I; (4) a substantial rate of release of 14CO2 from [U-14C] asparate; (5) in isolated mitochondria, succinate and alpha-glycerol phosphate stimulate O2 consumption whereas substrates which generate NADH, such as malate, do not; and (6) there is little or no rotenone-sensitive NADH oxidase activity in isolated mitochondria.  相似文献   

16.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

17.
Each of the two active sites of thymidylate synthase contains amino acid residues contributed by the other subunit. For example, Arg-178 of one monomer binds the phosphate group of the substrate dUMP in the active site of the other monomer [Hardy et al. (1987) Science 235, 448-455]. Inactive mutants of such residues should combine with subunits of other inactive mutants to form heterodimeric hybrids with one functional active site. In vivo and in vitro approaches were used to test this hypothesis. In vivo complementation was accomplished by cotransforming plasmid mixtures encoding pools of inactive Arg-178 mutants and pools of inactive Cys-198 mutants into a host strain deficient in thymidylate synthase. Individual inactive mutants of Arg-178 were also cotransformed with the C198A mutant. Subunit complementation was detected by selection or screening for transformants which grew in the absence of thymidine, and hence produced active enzyme. Many mutants at each position representing a wide variety of size and charge supported subunit complementation. In vitro complementation was accomplished by reversible dissociation and unfolding of mixtures of purified individual inactive Arg-178 and Cys-198 mutant proteins. With the R178F + C198A heterodimer, the Km values for dUMP and CH2H4folate were similar to those of the wild-type enzyme. By titrating C198A with R178F under unfolding-refolding conditions, we were able to calculate the kcat value for the active heterodimer. The catalytic efficiency of the single wild-type active site of the C198A + R178F heterodimer approaches that of the wild-type enzyme.  相似文献   

18.
Mitochondrial ADP-ribosylation leads to modification of two proteins of approximately 26 and 53 kDA: The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor for enzymatic, cysteine-specific ADP-ribosylation in mitochondria. The modified protein was isolated from the mitochondrial preparation and identified as GDH by N-terminal sequencing and mass spectrometric analyses of tryptic digests. Incubation of human hepatoma cells with [14C]adenine demonstrated the occurrence of the modification in vivo. Purified GDH was ADP-ribosylated in a cysteine residue in the presence of the mitochondrial activity that transferred the ADP-ribose from NAD+ onto the acceptor site. ADP- ribosylation of GDH led to substantial inhibition of its catalytic activity. The stoichiometry between incorporated ADP-ribose and GDH subunits suggests that modification of one subunit per catalytically active homohexamer causes the inactivation of the enzyme. Isolated, ADP-ribosylated GDH was reactivated by an Mg2+-dependent mitochondrial ADP-ribosylcysteine hydrolase. GDH, a highly regulated enzyme, is the first mitochondrial protein identified whose activity may be modulated by ADP-ribosylation.  相似文献   

19.
Summary Revertants of an acu-6 mutant of Neurospora crassa have been isolated. One revertant, which showed temperature-sensitive growth on acetate (Fig. 2), was found to possess an abnormally thermolabile PEP carboxykinase (Fig. 3). The temperature-sensitive property mapped at, or extremely close to, the site of the original mutation, confirming that acu-6 is the structural gene for PEP carboxykinase.A group of acu-6 mutants were examined by polyacrylamide gel electrophoresis for the presence of a protein migrating in the same position as PEP carboxykinase. Two of the seven mutants examined were found to possess such protein and both of these show inter-allelic complementation. When grown on acetate the complementing heterokaryons showed about 5% of the wild type level of PEP carboxykinase activity. This activity was more thermolabile than that in wild type (Fig. 6) and the heterokaryons showed temperature-sensitive growth on acetate (Fig. 5).  相似文献   

20.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号