首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

2.
Summary Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptie cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple active zones. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.In honour of Prof. P. van Duijn  相似文献   

3.
Summary Acetylcholinesterase (AChE) activity was demonstrated histochemically at the electron microscopic level in the compound eye of the worker bee (Apis mellifica L.) by use of the method of Lewis and Shute (1969).All photoreceptor axons (short and long visual fibres) display AChE activity. The reaction product is located in the axoplasm and at the plasma membrane. Substantial amounts of the reaction product can be detected in the intercellular spaces between the visual fibres. Along the visual fibres, the enzyme activity is unevenly distributed. High AChE activity is present in the distal parts of the axons, in contrast to lower enzyme levels in the lamina. However, AChE is also present in the proximal terminals of the visual fibres as well as in the intercellular spaces between visual fibre terminals and the postsynaptic neurones (monopolar cells). Intracellular enzyme activity is almost absent in the monopolars.The authors assume the high AChE activity in the visual fibres to be indicative of acetylcholine as the transmitter at the first synapse of the compound eye. This hypothesis is discussed in view of the results of autoradiographic, electrophysiological and pharmacological investigations of the compound eye and of the ocellus. Our data are at variance with results of studies on the eyes of Diptera.  相似文献   

4.
Summary Light- and electron-microscopic enzyme cytochemistry was used to localize acetylcholinesterase (AChE) activity in the synganglion (brain) of the tick Dermacentor variabilis. High AChE activity was observed throughout the neuropil as well as adjacent to most neuronal perikarya. Intracellular activity was not observed by light microscopy. By electron microscopy, reaction product was localized at the plasma membrane of glia and neurons. Enzyme activity was not associated with the olfactory globuli neurons. In other types of neurons, small amounts of reaction product were observed in the Golgi apparatus and nuclear envelope. Large neurosecretory neurons contained activity that appeared to be associated with deep invaginations of the plasma membrane as well as intracellular membranes. AChE activity was also associated with processes of both neurons and glia. In most peripheral nerves AChE activity was associated with virtually all axons. Clearly then, AChE is associated with glia and non-cholinergic neurons as well as with presumed cholinergic neurons. The widespread localization and large amounts of AChE in the tick brain exceeds that reported for other invertebrates and vertebrates. As has been suggested for other animals, AChE in the tick brain may have functions in addition to its known role in cholinergic neurotransmission.  相似文献   

5.
Motor innervation and particularly the structure of motor end plates (MEPs) was studied in the extraocular muscles of the lamprey, Lampetra fluviatilis L., by light and electron microscopy. Each muscle is supplied with numerous thin motor nerve fibres. Motor end plates are located at their ends or along their course. Two motor end plate types were distinguished: en grappe-like plates with a low acetylcholinesterase (AChE) activity were observed on thin muscle fibres, whilst en plaque-like plates with a high AChE activity were found on thick mitochondria-rich and thick multifibrillar muscle fibres. The postsynaptic membrane of the former MEP type does not show the presence of infoldings, MEPs located on thick mitochondria-rich fibres show occasional infoldings, whereas the postsynaptic membrane of MEPs present on thick multifibrillar fibres reveals numerous infoldings. Motor end plates present in the extraocular muscles in the lamprey possess features typical for higher vertebrates and elasmobranch fishes, as well as for Tunicata.  相似文献   

6.
Summary A method is described allowing localization of acetylcholinesterase (AChE) by both light and electron microscopy. During the reaction lead thio-diacetyl is decomposed, and therefore precipitated as PbS in the presence of native-SH group produced by the hydrolysis of acetylthiocholine perchlorate. The reaction takes place at neutral pH, since improves the sensitivity of AChE localizations. Application of the method to parasympathetic neurons showed that AChE was mainly localized in the rough endoplasmic reticulum of the perikaryons. No reaction was visible in glial cells. AChE was also localized on the plasma membrane of parasympathetic neurons. In mouse embryo muscles AChE activity was seen to be high and was not yet restricted to the synaptic area. The well developed Schwann cells accompanying the neurites displayed constant AChE activity on their plasma membrane.Supported by a grant of INSERM C.R.L. N0 79-5-318-6  相似文献   

7.
The distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the superior cervical ganglion (SCG) of the cat were determined by electron microscopy (EM) with the bis- (thioacetoxy)aurate (I), or Au(TA)2, method. Before the infusion of fixative, one of the enzymes was selectively, irreversibly inactivated in vivo, as confirmed by light microscope (LM) examination of sections of the stellate ganglion stained by the more specific copper thiocholine method. Physostigmine-treated controls, for inhibition of AChE or BuChE, were stained concomitantly with tissue for enzyme localization by the Au(TA)2 method for EM examination in each experiment. It was concluded that most of the AChE of the cat SCG is present in the plasma membranes of the preganglionic axons and their terminals, and in the dendritic and perikaryonal plasma membranes of the postsynaptic ganglion cells. BuChE is confined largely to the postsynaptic neuronal plasma membranes. Reasons for the discrepancies between the localizations found by the present direct EM observations and those deduced earlier from LM comparisons of normal and denervated SCG are discussed. It is proposed that a trophic factor released by the preganglionic terminals is probably required for the synthesis of postsynaptic neuronal AChE, and that BuChE may serve as a precursor of AChE at that site.  相似文献   

8.
Morphological evidence for dendritic secretion of acetylcholinesterase (AChE) in rat substantia nigra--a physiologically known phenomenon--was searched by means of a modified cytochemical method devised for fine localization of AChE activity at the electron microscopic level. DAB precipitate was observed in cluster of small vesicles in contact with the plasma membrane and in the extracellular space in the vicinity of the vesicles. Single coated or uncoated large vesicles filled with stained material were found in the cytoplasm of the dendrites at distance from or in contact with the plasma membrane. Immunoperoxidase staining with specific anti-serum against rat AChE gave similar localization of AChE. These results suggest that AChE is released from the dendrites of the nigral neurons by a process of vesicular exocytosis and captured by endocytosis. The relation of this process to a putative release from the smooth endoplasmic reticulum remains to be elucidated.  相似文献   

9.
Using gas chromatography it was shown that acetylcholine (ACh) was present in both etiolated and green oat (Avena sativa L. cv. Diadem) seedlings. In etiolated seedlings the ACh level was low, but increased rapidly during exposure to sunlight and red light (RL). The stimulative influence of RL was reversed by far-red light (FRL). The RL- and FRL- changes in ACh level were correlated to changes in acetylcholinesterase (AChE) localization. Using Karnovsky's method, it was found that in the etiolated coleoptiles the products of enzymatic reaction showing AChE activity accumulated selectively on the external side of plasma membrane. After exposure of seedlings to RL AChE activity disappeared. Subsequent FRL made it reappear on the external side of the plasma membrane. When the plants became green, oscillations of ACh were clearly observable. For plants grown under a LD 16:8 cycle the changes were circadian.  相似文献   

10.
The vertebrate neuromuscular junction (NMJ) is marked by molecular specializations that include postsynaptic clusters of acetylcholine receptor (AChR) and acetylcholinesterase (AChE). Whereas AChRs are aggregated in the postsynaptic muscle membrane to a density of 10,000/mum(2), AChE is concentrated, also to a high density, in the synaptic basement membrane (BM). In recent years considerable progress has been made in understanding the cellular and molecular mechanisms of AChR clustering. It is known that during the early stages of motoneuron-muscle interaction, the nerve-secreted proteoglycan agrin activates the muscle-specific kinase MuSK, which leads to the formation of a postsynaptic cytoskeletal scaffold that immobilizes and concentrates AChRs through a process generally accepted to involve diffusion-mediated trapping of the receptors. We have recently tested this diffusion-trap model at the single molecule level for the first time by using quantum-dot labeling to track individual AChRs during NMJ development. Our results showed that single AChRs exhibit Brownian-type movement, with diffusion coefficients of 10(-11) to 10(-9)cm(2)/s, until they become immobilized at "traps" assembled in response to synaptogenic stimuli. Thus, free diffusion of AChRs is an integral part of their clustering mechanism. What is the mechanism for AChE clustering? We previously showed that the A(12) asymmetric form of AChE binds to perlecan, a heparan-sulfate proteoglycan which in turn interacts with the transmembrane dystroglycan complex. Through this linkage AChE becomes bound to the muscle membrane and, like AChRs, may exhibit lateral mobility along the membrane. Consistent with this idea, pre-existent AChE at the cell surface becomes clustered together with AChRs following synaptogenic stimulation. Future studies testing diffusion-mediated trapping of AChE should provide insights into the synaptic localization of BM-bound molecules at the NMJ.  相似文献   

11.
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization.  相似文献   

12.
The localization of acetylcholinesterase (AChE) was studied in the cerebellar cortex of the crossbred trembler chickens by means of histo- and cytochemical methods. No essential differences between the crossbred normal and the crossbred trembler chickens were observed. The common results were as follows: Under a light microscope AChE activity was predominantly evident in the molecular layer, and secondly in the granular layer. AChE was ultrastructurally distributed principally in the cisternae of rough endoplasmic reticulum (ER) and in a part of nuclear envelope of the Purkinje, the Golgi and some of the basket and granule cells, and in a portion of the sacculus of the Golgi apparatus of the Purkinje cell only. In dendrites and the initial axon of the Purkinje cells the smooth ER also showed AChE activity. Although dendritic terminals of the Golgi cells contained AChE reaction products, the axon terminal did not. Some of the afferent terminal fibers forming the cerebellar glomerulus exhibited weakly a positive AChE reaction, while others in the vicinity did not show any AChE activity at all. However, the enzyme reaction product was localized in the intercellular spaces between a presynaptic afferent terminal and the postsynaptic granule cell dendritic terminals in the glomerulus. In addition, AChE activity was found in the form of spots in the intercellular spaces of both molecular and granular layers.  相似文献   

13.
14.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

15.
Abstract: Formation of a functional neuromuscular junction (NMJ) involves the biosynthesis and transport of numerous muscle-specific proteins, among them the acetylcholine-hydrolyzing enzyme acetylcholinesterase (AChE). To study the mechanisms underlying this process, we have expressed DMA encoding human AChE downstream of the cytomegalovirus promoter in oocytes and developing embryos of Xenopus laevis. Recombinant human AChE (rHAChE) produced in Xenopus was biochemically and immunochemically indistinguishable from native human AChE but clearly distinguished from the endogenous frog enzyme. In microinjected embryos, high levels of catalytically active rHAChE induced a transient state of over-expression that persisted for at least 4 days postfertilization. rHAChE appeared exclusively as nonassembled monomers in embryos at times when endogenous Xenopus AChE displayed complex oligomeric assembly. Nonetheless, cell-associated rHAChE accumulated in myotomes of 2-and 3-day-old embryos within the same sub-cellular compartments as native Xenopus AChE. NMJs from 3-day-old DNA-injected embryos displayed fourfold or greater overexpression of AChE, a 30% increase in postsynaptic membrane length, and increased folding of the postsynaptic membrane. These findings indicate that an evolutionarily conserved property directs the intracellular trafficking and synaptic targeting of AChE in muscle and support a role for AChE in vertebrate synaptogenesis.  相似文献   

16.
The mechanism of shortening MEPC decay phase after initial prolongation due to acetylcholinesterase inhibition by armine and neostigmine was studied by use of two-electrode voltage-clamp at the mice diaphragm Factors which switch off non-quantal secretion of acetylcholine from the nerve (acute denervation in vitro, ouabain, high concentration of magnesium ions) only slightly reduced the prolongation of MEPC caused by AChE inhibition. So, postsynaptic potentiation of MEPC by nonquantal ACh is not significant immediately after AChE inhibition. At the same time these factors abolished the process of shortening MEPC decay phase. It is concluded, that desensitization of the postsynaptic membrane induced by nonquantal ACh is the main mechanism of the MEPC shortening and that this mechanism can compensate insufficient AChE activity.  相似文献   

17.
Summary The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synapto-somes ofTorpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5′-adenylyl imidodiphosphate as substrate and 5′-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of leed pyrophosphate precipitate.  相似文献   

18.
Summary Colchicine (0.1 M) or vinblastine (0.01 M) was locally applied on the sciatic nerves of newborn rats. Both colchicine and vinblastine caused reversible disappearance of axonal neurotubules and appearance of increased amounts of neurofilaments at the site of application. Subsequent morphogenesis of myoneural junctions in the tibialis anterior muscle was studied after histochemical demonstration of acetylcholinesterase (AChE; E.C. 3.1.1.7) and non-specific cholinesterase (Ns. ChE; E.C. 3.1.1.8) activity in the myoneural area.Development of the postsynaptic muscle plasma membrane of the myoneural junction was arrested in the ipsilateral, but not in the contralateral control side, for a period of about three weeks following treatment with the test substances. After this delay the myoneural morphogenesis continued normally and neurotubules were seen in the axoplasm.Since disruption of neurotubules is likely to cause blockage of the intratubular axoplasmic transport system, it seems possible that the neurotrophic influence responsible for the development of the postsynaptic muscle membrane is mediated through a secretory product transported along axons intratubularly to the nerve endings.  相似文献   

19.
The transsynaptic regulation of acetylcholinesterase (AChE) was studied by recording the changes in enzymatic activity following denervation in two types of autonomic ganglia in the frog, Rana pipiens. Opposite effects on AChE were found in the parasympathetic cardiac ganglion and in the sympathetic lumbar ganglion; denervation produced a significant increase in AChE activity in cardiac ganglia but a significant decrease in lumbar ganglia. The relative effects of denervation on intracellular and total AChE were examined by selectively inhibiting extracellular AChE with echothiophate, a poorly lipid-soluble cholinesterase inhibitor. Denervation resulted in a significant increase in intracellular AChE in cholinergic cardiac ganglia but had no effect on intracellular AChE activity in adrenergic lumbar ganglia. Histochemical studies revealed little change in extracellular AChE staining upon denervation in the cardiac ganglion, whereas in the lumbar ganglia there was a loss of AChE-specific reaction product. These results raise the possibility that the transsynaptic control of AChE activity by innervation in the frog is influenced by the transmitter synthetic properties of the postsynaptic ganglion cells.  相似文献   

20.
Fasciculin II, a potential inhibitor of acetylcholinesterase (AChE), was tested on two types of Aplysia cholinergic receptors: H type, opening Cl- channels; and D type, opening cationic channels. Evoked postsynaptic inhibitory responses and responses to ionophoretic application of acetylcholine (ACh) or carbachol onto H-type receptors were potentiated in the presence of fasciculin II at 10(-9) M, whereas the same concentration of this drug was without effect on the evoked postsynaptic excitatory responses or on the application of ACh or carbachol on D-type receptors. The observed effects of fasciculin II were identical to those obtained with other inhibitors of AChE on the same preparation. The facilitatory effect on the carbachol response in H-type cells indicates that fasciculin II, as other AChE inhibitors, does not act on H-type synapses solely by blocking the hydrolysis of ACh. We concluded that fasciculin II was a good inhibitor of acetylcholinesterase on neuronal preparations in vivo. The results are further discussed as a new element in favor of a previously proposed hypothesis of a molecular interaction between AChE and ACh H-type receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号