首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

2.
Kinetic partitioning of protein folding and aggregation.   总被引:1,自引:0,他引:1  
We have systematically studied the effects of 40 single point mutations on the conversion of the denatured form of the alpha/beta protein acylphosphatase (AcP) into insoluble aggregates. All the mutations that significantly perturb the rate of aggregation are located in two regions of the protein sequence, residues 16-31 and 87-98, each of which has a relatively high hydrophobicity and propensity to form beta-sheet structure. The measured changes in aggregation rate upon mutation correlate with changes in the hydrophobicity and beta-sheet propensity of the regions of the protein in which the mutations are located. The two regions of the protein sequence that determine the aggregation rate are distinct from those parts of the sequence that determine the rate of protein folding. Dissection of the protein into six peptides corresponding to different regions of the sequence indicates that the kinetic partitioning between aggregation and folding can be attributed to the intrinsic conformational preferences of the denatured polypeptide chain.  相似文献   

3.
We have proposed that the [Het-s] infectious cytoplasmic element of the filamentous fungus Podospora anserina is the prion form of the HET-s protein. The HET-s protein is involved in a cellular recognition phenomenon characteristic of filamentous fungi and known as heterokaryon incompatibility. Under the prion form, the HET-s protein causes a cell death reaction when co-expressed with the HET-S protein, from which it differs by only 13 amino acid residues. We show here that the HET-s protein can exist as two alternative states, a soluble and an aggregated form in vivo. As shown for the yeast prions, transition to the infectious prion form leads to aggregation of a HET-s--green fluorescent protein (GFP) fusion protein. The HET-s protein is aggregated in vivo when highly expressed. However, we could not demonstrate HET-s aggregation at wild-type expression levels, which could indicate that only a small fraction of the HET-s protein is in its aggregated form in vivo in wild-type [Het-s] strains. The antagonistic HET-S form is soluble even at high expression level. A double amino acid substitution in HET-s (D23A P33H), which abolishes prion infectivity, suppresses in vivo aggregation of the GFP fusion. Together, these results further support the model that the [Het-s] element corresponds to an abnormal self-perpetuating aggregated form of the HET-s protein.  相似文献   

4.
The characterization of the structural dynamics of proteins, including those that present a substantial degree of disorder, is currently a major scientific challenge. These dynamics are biologically relevant and govern the majority of functional and pathological processes. We exploited a combination of enhanced molecular simulations of metadynamics and NMR measurements to study heterogeneous states of proteins and peptides. In this way, we determined the structural ensemble and free-energy landscape of the highly dynamic helix 1 of the prion protein (PrP-H1), whose misfolding and aggregation are intimately connected to a group of neurodegenerative disorders known as transmissible spongiform encephalopathies. Our combined approach allowed us to dissect the factors that govern the conformational states of PrP-H1 in solution, and the implications of these factors for prion protein misfolding and aggregation. The results underline the importance of adopting novel integrated approaches that take advantage of experiments and theory to achieve a comprehensive characterization of the structure and dynamics of biological macromolecules.  相似文献   

5.
The Saccharomyces cerevisiae protein Ure2 functions as a regulator of nitrogen metabolism and as a glutathione-dependent peroxidase. Ure2 also has the characteristics of a prion, in that it can undergo a heritable conformational change to an aggregated state; the prion form of Ure2 loses the regulatory function, but the enzymatic function appears to be maintained. A number of factors are found to affect the prion properties of Ure2, including mutation and expression levels of molecular chaperones, and the effect of these factors on structure and stability are being investigated. The relationship between structure, function and folding for the yeast prion Ure2 are discussed.  相似文献   

6.
Transmissible spongiform encephalopathies are associated with the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). Here we have examined the kinetics of folding and unfolding reactions for the recombinant human prion protein C-terminal fragment 90-231 at pH 4.8 and 7.0. The stopped-flow data provide clear evidence for the population of an intermediate on the refolding pathway of the prion protein as indicated by a pronounced curvature in chevron plots and the presence of significant burst phase amplitude in the refolding kinetics. In addition to its role in the normal prion protein folding, this intermediate likely represents a crucial monomeric precursor of the pathogenic PrP(Sc) isoform.  相似文献   

7.
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl.  相似文献   

8.
  • 1.1. A hypothesis on protein folding in vivo based on the Poincare recursion argument is proposed and discussed.
  • 2.2. It is postulated that protein folding in vivo proceeds through prefolded peptide segments which consist of 3 to 14 amino acids.
  • 3.3. It is also shown that circular dichroism spectroscopy can successfully be applied for monitoring of the appearance of the correct tertiary structure of proteins.
  相似文献   

9.
Prion protein (PrP) plays an important role in cell protection from oxidative stress due to its action as copper-chelating protein. The present study demonstrates that PrP participates in reductions of Cu2+ to Cu+ ions, and that this process results in fragmentation of protein. The interaction with phosphatidylinositol, a natural phospholipid moiety bound to PrP, strongly enhances recombinant PrP aggregation and degradation. The copper-dependent PrP degradation could promote the formation of amyloid structures, destabilizing the PrP soluble form by the cleavage of the N-terminal part.  相似文献   

10.
The role of conformational intermediates in the conversion of prion protein from its normal cellular form (PrP(C)) to the disease-associated "scrapie" form (PrP(Sc)) remains unknown. To look for such intermediates in equilibrium conditions, we have examined the unfolding transitions of PrP(C), primarily using the chemical denaturant guanidine hydrochloride (GuHCl). When the protein conformation is assessed by NMR, there is a gradual shift of NMR signals in the regions between residues 125-146 and 186-196. The denaturant dependence of these shifts shows that in aqueous solution the native and locally unfolded conformations are both significantly populated. Following this shift, there is the major unfolding transition to generate a substantially unfolded population. However, analysis of NMR chemical shift and intensity changes shows that there is persistent structure in the molecule well beyond this major cooperative unfolding transition. Residual structure within this state is extensive and encompasses the majority of the secondary structure elements found in the native state of the protein.  相似文献   

11.
The yeast non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The [URE3] phenotype is equivalent to loss of function of Ure2, a protein involved in regulation of nitrogen metabolism. The prion-like behaviour of Ure2 in vivo is dependent on the first 65 amino acid residues of its N-terminal region which contains a highly repetitive sequence rich in asparagine. This region has been termed the prion-determining domain (PrD). Removal of as little as residues 2-20 of the protein is sufficient to prevent occurrence of the [URE3] phenotype. Removal of the PrD does not affect the regulatory activity of Ure2. The C-terminal portion of the protein has homology to glutathione S -transferases, which are dimeric proteins. We have produced the Ure2 protein to high yield in Escherichia coli from a synthetic gene. The recombinant purified protein is shown to be a dimer. The stability, folding and oligomeric state of Ure2 and a series of N-terminally truncated or deleted variants were studied and compared. The stability of Ure2, DeltaGD-N, H2O, determined by chemical denaturation and monitored by fluorescence, is 12.1(+/-0.4) kcal mol-1at 25 degrees C and pH 8.4. A range of structural probes show a single, coincident unfolding transition, which is invariant over a 550-fold change in protein concentration. The stability is the same within error for Ure2 variants lacking all or part of the prion-determining domain. The data indicate that in the folded protein the PrD is in an unstructured conformation and does not form specific intra- or intermolecular interactions at micromolar protein concentrations. This suggests that the C-terminal domain may stabilise the PrD against prion formation by steric means, and implies that the PrD does not induce prion formation by altering the thermodynamic stability of the folded protein.  相似文献   

12.
Misfolded prion protein, PrPSc, is believed to be the pathogenic agens in transmissible spongiform encephalopathies. Little is known about the autocatalytic misfolding process. Looking at the intrinsic properties of short sequence stretches, such as conformational flexibility and the tendency to populate extended conformers, we have examined the aggregation behaviour of various peptides within the region 106-157 of the sequence of human prion protein. We observed fast aggregation for the peptide containing residues I138-I-H-F141. This sequence, which is presented at the surface of cellular prion protein, PrPC, in an almost beta-sheet-like conformation, is therefore an ideal anchor-point for initial intermolecular contacts leading to oligomerization. We further report that the aggregation propensity of the neurotoxic peptide 106-126 appears to be centred in its termini and not in the central, alanine-rich sequence (A113-G-AAAA-G-A120).  相似文献   

13.
The conversion of the cellular form of the prion protein (PrPC) to an altered disease state, generally denoted as scrapie isoform (PrPSc), appears to be a crucial molecular event in prion diseases. The details of this conformational transition are not fully understood, but it is perceived that they are associated with misfolding of PrP or its incapacity to maintain the native fold during its cell cycle. Here we present a tryptophan mutant of PrP (F198W), which has enhanced fluorescence sensitivity to unfolding/refolding transitions. Equilibrium folding was studied by circular dichroism and fluorescence. Pressure-jump experiments were successfully applied to reveal rapid submillisecond folding events of PrP at temperatures not accessed before. D. C. Jenkins and D. S. Pearson contributed equally.  相似文献   

14.
The prion diseases are transmissible neurodegenerative disorders linked to a pathogenic conformer (PrP(Sc)) of the normal prion protein (PrP(C)). Accumulation of PrP(Sc) occurs via a poorly defined process in which PrP(Sc) complexes with and converts endogenous PrP(C) to nascent PrP(Sc). Recent experiments have focused on the highly charged first alpha helix (H1) of PrP. It has been proposed that two putative asparagine-to-arginine intrahelical salt bridges stabilize H1 in PrP(C) yet form intermolecular ionic bonds with adjacent PrP molecules during conversion of PrP(C) to PrP(Sc) (M. P. Morrissey and E. I. Shakhnovich, Proc. Natl. Acad. Sci. USA 96:11293-11298, 1999). Subsequent work (J. O. Speare et al., J. Biol. Chem. 278:12522-12529, 2003 using a cell-free assay of PrP(Sc) conversion suggested that rather than promoting conversion, the salt bridges stabilize PrP(C) against it. However, the role of individual H1 charges in PrP(Sc) generation has not yet been investigated. To approach this question, we systematically reversed or neutralized each charged residue in H1 and tested the effect on conversion to PrP(Sc) in scrapie-infected murine neuroblastoma (ScN2a) cells. We find that replacements of charged H1 residues with like charges permit conversion, while charge reversals hinder it. Neutralization of charges in the N-terminal (amino acids 143 to 146) but not the C-terminal (amino acids 147 to 151) half of H1 permits conversion, while complete reversal of charge orientation of the putative salt bridges produces a nonconvertible PrP. Circular dichroism spectroscopy studies and confocal microscopy immunofluorescence localization studies indicated that charge substitutions did not alter the secondary structure or cell surface expression of PrP(C). These data support the necessity of specific charge orientations in H1 for a productive PrP(Sc)-PrP(C) complex.  相似文献   

15.
A computer model of protein aggregation competing with productive folding is proposed. Our model adapts techniques from lattice Monte Carlo studies of protein folding to the problem of aggregation. However, rather than starting with a single string of residues, we allow independently folding strings to undergo collisions and consider their interactions in different orientations. We first present some background into the nature and significance of protein aggregation and the use of lattice Monte Carlo simulations in understanding other aspects of protein folding. The results of a series of simulation experiments involving simple versions of the model illustrate the importance of considering aggregation in simulations of protein folding and provide some preliminary understanding of the characteristics of the model. Finally, we discuss the value of the model in general and of our particular design decisions and experiments. We conclude that computer simulation techniques developed to study protein folding can provide insights into protein aggregation, and that a better understanding of aggregation may in turn provide new insights into and constraints on the more general protein folding problem.  相似文献   

16.
A key event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of PrP-sen to PrP-res. Morrissey and Shakhnovich (Morrissey, M. P., and Shakhnovich, E. I. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11293-11298) proposed that the conversion mechanism involves critical interactions at helix 1 (residues 144-153) and that the helix is stabilized on PrP-sen by intra-helix salt bridges between two aspartic acid-arginine ion pairs at positions 144 and 148 and at 147 and 151, respectively. Mutants of the hamster prion protein were constructed by replacing the aspartic acids with either asparagines or alanines to destabilize the proposed helix 1 salt bridges. Thermal and chemical denaturation experiments using circular dichroism spectroscopy indicated the overall structures of the mutants are not substantially destabilized but appear to unfold differently. Cell-free conversion reactions performed using ionic denaturants, detergents, and salts (conditions unfavorable to salt bridge formation) showed no significant differences between conversion efficiencies of mutant and wild type proteins. Using conditions more favorable to salt bridge formation, the mutant proteins converted with up to 4-fold higher efficiency than the wild type protein. Thus, although spectroscopic data indicate the salt bridges do not substantially stabilize PrP-sen, the cell-free conversion data suggest that Asp-144 and Asp-147 and their respective salt bridges stabilize PrP-sen from converting to PrP-res.  相似文献   

17.
18.
The conversion of normal prion protein (PrPC) into scrapie isoform (PrPSc) is a key event in the pathogenesis of prion diseases. However, the conversion mechanism has given rise to much controversy. For instance, there is much debate on the behavior of helix 1 (H1) in the conversion. A series of experiments demonstrated that H1 in isolated state was very stable under a variety of conditions. But, other experiments indicated that helices 2 and 3 rather than H1 were retained in PrPSc. In this paper, molecular dynamics (MD) simulation is employed to investigate the dynamic behavior of H1. It is revealed that although the helix 1 of Human PrPC (HuPrPC) is very stable in the isolated state, it becomes unstable when incorporated into native HuPrPC, which likely results from the long-range electrostatic interaction between Asp147 and Arg208 located in the helices 1 and 3, respectively. This explanation is supported by experimental evaluation and MD simulation on D147N mutant of HuPrPC that the mutant becomes a little more stable than the wild type HuPrPC. This finding not only help to reconcile the existing debate on the role of helix 1 in the PrPC-->PrPSc transition, but also reveals a possible mechanism for triggering the PrPC-->PrPSc conversion.  相似文献   

19.
Principles of protein folding, misfolding and aggregation   总被引:12,自引:0,他引:12  
This review summarises our current understanding of the underlying and universal mechanism by which newly synthesised proteins achieve their biologically functional states. Protein molecules, however, all have a finite tendency either to misfold, or to fail to maintain their correctly folded states, under some circumstances. This article describes some of the consequences of such behaviour, particularly in the context of the aggregation events that are frequently associated with aberrant folding. It focuses in particular on the emerging links between protein aggregation and the increasingly prevalent forms of debilitating disease with which it is now known to be associated.  相似文献   

20.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号