首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:将带有完整自身信号肽的西方许旺酵母α-淀粉酶基因克隆到大肠杆菌中,验证西方许旺酵母α-淀粉酶基因能否在大肠杆菌中有效表达。方法:利用PCR扩增带有完整自身信号肽的西方许旺酵母α-淀粉酶基因,并将其接入Zeocin启动子片段,构建了重组表达载体GapZA,转化大肠杆菌,验证得到的阳性克隆菌株是否表达α-淀粉酶活性。结果:阳性克隆菌株均有α-淀粉酶活性。结论:证明了许旺酵母α-淀粉酶能在自身信号肽引导下分泌到大肠杆菌细胞外,并且表现出明显酶活。  相似文献   

2.
Temperature and pH had only a slight effect on the astaxanthin content of a Phaffia rhodozyma mutant, but influenced the maximum specific growth rate and cell yield profoundly. The optimum conditions for astaxanthin production were 22°C at pH 5.0 with a low concentration of carbon source. Astaxanthin production was growth-associated, and the volumetric astaxanthin concentration gradually decreased after depletion of the carbon source. The biomass concentration decreased rapidly during the stationary growth phase with a concomitant increase in the cellular content of astaxanthin. Sucrose hydrolysis exceeded the assimilation rates of D-glucose and D-fructose and these sugars accumulated during batch cultivation. D-Glucose initially delayed D-fructose uptake, but D-fructose utilization commenced before glucose depletion. In continuous culture, the highest astaxanthin content was obtained at the lowest dilution rate of 0.043 h–1. The cell yield reached a maximum of 0.48 g cells·g–1 glucose utilized between dilution rates of 0.05 h–1 and 0.07 h–1 and decreased markedly at higher dilution rates. Correspondence to: J. C. Du Preez  相似文献   

3.
A starch-hydrolyzing enzyme from Schwanniomyces occidentalis has been reported to be a novel glucoamylase, but there is no conclusive proof that it is glucoamylase. An enzyme having the hydrolytic activity toward soluble starch was purified from a strain of S. occidentalis. The enzyme showed high catalytic efficiency (k(cat)/K(m)) for maltooligosaccharides, compared with that for soluble starch. The product anomer was alpha-glucose, differing from glucoamylase as a beta-glucose producing enzyme. These findings are striking characteristics of alpha-glucosidase. The DNA encoding the enzyme was cloned and sequenced. The primary structure deduced from the nucleotide sequence was highly similar to mold, plant, and mammalian alpha-glucosidases of alpha-glucosidase family II and other glucoside hydrolase family 31 enzymes, and the two regions involved in the catalytic reaction of alpha-glucosidases were conserved. These were no similarities to the so-called glucoamylases. It was concluded that the enzyme and also S. occidentalis glucoamylase, had been already reported, were typical alpha-glucosidases, and not glucoamylase.  相似文献   

4.
5.
Summary A chemostat culture system was investigated in order to produce protease by Aspergillus species effectively in the presence of 10% NaCl which was added to avid bacterial contamination. A salt tolerant fungus Aspegillus oryzae NISL 1913 produced protease even in the presence of 10% NaCl. The protease production by this strain was accelerated by proteins. Isolated soy protein or defatted soybean fluor (DSF) was used as a nitrogen source and an inducer of protease production, and starch was used as a carbon source. Continuous protease production was performed in a carbon-limited chemostat culture (dilution rate = 0.02). The maximum activity reached 2200 protease units (PU)/ml of the culture broth (130 PU/mg dry weight) with DSF as a nitrogen source. The culture could be continued for more than 50 days without any bacterial contamination.  相似文献   

6.
An alpha-amylase gene (AMY) was cloned from Schwanniomyces occidentalis CCRC 21164 into Saccharomyces cerevisiae AH22 by inserting Sau3AI-generated DNA fragments into the BamHI site of YEp16. The 5-kilobase insert was shown to direct the synthesis of alpha-amylase. After subclones containing various lengths of restricted fragments were screened, a 3.4-kilobase fragment of the donor strain DNA was found to be sufficient for alpha-amylase synthesis. The concentration of alpha-amylase in culture broth produced by the S. cerevisiae transformants was about 1.5 times higher than that of the gene donor strain. The secreted alpha-amylase was shown to be indistinguishable from that of Schwanniomyces occidentalis on the basis of molecular weight and enzyme properties.  相似文献   

7.
Summary The production of -amylase and amyloglucosidase activity in the yeast Schwanniomyces castellii strain CBS 2863 is repressed in the presence of glucose. Mutants displaying increased amylase activity were obtained after treatment with UV light and screening for resistance to 2-deoxy-glucose. One mutant was found to exhibit derepressed amylase activity. Biosynthesis and the rate of excretion did not appear to be as highly sensitive to dissolved oxygen, pH and dilution rate as in the parental strain.  相似文献   

8.
Abstract A strain (WKW2) of Penicillium chrysogenum transformed with heterologous fungal acetamidase ( amd S) and bacterial β-galactosidase ( lac Z) was grown at a dilution rate of 0.17 h−1 (doubling time of approx. 4.1 h) for 1600 h in a glucose-limited culture. By the end of the experiment the original strain had been almost completely replaced by spontaneous, morphological mutants, but the acetamidase and β-galactosidase activities of the culture were essentially unaltered. Furthermore, when WKW2 and the non-transformed parental strain (NRRL1951) were grown together in glucose- or NH4+-limited chemostat cultures, neither strain had a selective advantage over the other. Thus, heterologous gene expression does not result in NRRL1951 having a selective advantage over WKW2. These results suggest that continuous flow culture systems could be used for efficient (and cost effective) production of recombinant proteins.  相似文献   

9.
Production of the glycopeptide antibiotic vancomycin by Amycolatopsis orientalis ATCC 19795 was examined in phosphate-limited chemostat cultures with biomass-recycle, employing an oscillating membrane separator, at a constant dilution rate (D= 0. 14 h-1). Experiments made under low agitation conditions (600 rpm) showed that the biomass concentration could be increased 3.9-fold with vancomycin production kinetics very similar to that of chemostat culture without biomass-recycle. The specific production rate (qvancomycin) was maximal when the biomass-recycle ratio (R) was 0.13 (D= 0.087 h-1). When the dissolved oxygen tension dropped below 20% (air saturation), the biomass and vancomycin concentrations decreased and an unidentified red metabolite was released into the culture medium. Using increased agitation (850 rpm), used to maintain the dissolved oxygen tension above 20% air saturation, maximum increases in biomass concentration (7.9-fold) and vancomcyin production 1.6-fold (0.6 mg/g dry weight/h) were obtained when R was 0.44 (D= 0.056 h -1) compared to chemostat culture without biomass-recycle. Moreover, at this latter recycle ratio the volumetric vancomycin production rate was 14.7 mg/L/h (a 7-fold increase compared to chemostat culture without biomass-recycle). These observations encourage further research on biomass-recycling as a means of optimising the production of antibiotics.  相似文献   

10.
The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C(18) cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C(18) reverse-phase column. The specific growth rate (mu) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing mu. The MC-LR and MC-RR contents on a dry weight basis were highest at mu of 0.1/day at 339 and 774 microg g(-1), respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower mu, whereas the MC-producing rate was linearly proportional to mu. The C fixation rate at an ambient irradiance (160 microeinsteins m(-2) s(-1)) increased with mu. The ratios of the MC-producing rate to the C fixation rate were higher at a lower mu. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.  相似文献   

11.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40°C. The killer protein was chromosomally encoded. Mannan, but not β-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

12.
The use of yeast as an expression system for heterologous proteins offers several potential advantages with respect to industrial scale-up and genetics over other expression systems, but suffers from several drawbacks. For example, the secreted proteins of S. cerevisiae, found in the periplasm, are hyperglycosylated and the organism has a limited range of usable substrates. Other yeasts have similar disadvantages in addition to producing a variety of proteases. We have investigated the use of Schwanniomyces occidentalis as a host for developing a gene expression system in which these and several disadvantages are minimized. The present paper describes the isolation and characterization of an invertase from cell free supernatants of the yeast Schwanniomyces occidentalis grown on lactose. The enzyme is a beta-D-fructofuranoside-fructohydrolyase, composed of two identical subunits of 76,000 to 78,000 da. with a native molecular mass of 125,000 +/- 25,000 da. of which approximately 17% can be attributed to N-linked carbohydrate. The enzyme has a Vmax of 0.49 +/- 0.025 units, a Km of 21 +/- 1.5 mM, and temperature and pH optima of 55 degrees C and 3.9-4.5, respectively. The amino acid sequences of the amino terminal region and an internal tryptic peptide support an 81% identity with the invertase from Saccharomyces cerevisiae. The enzyme is induced by low glucose and is catabolite repressed.  相似文献   

13.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

14.
Differing claims regarding the stability of the recombinant ethanologen E. coli KO11 are addressed here in batch and chemostat culture. In repeat batch culture, the organism was stable on glucose, mannose, xylose and galactose for at least three serial transfers, even in the absence of a selective antibiotic. Chemostat cultures on glucose were remarkably stable, but on mannose, xylose and a xylose/glucose mixture, they progressively lost their hyperethanologenicity. On xylose, the loss was irreversible, indicating genetic instability. The loss of hyperethanologenicity was accompanied by the production of high concentrations of acetic acid and by increasing biomass yields, suggesting that the higher ATP yield associated with acetate production may foster the growth of acetate-producing revertant strains. Plate counts on high chloramphenicol-containing medium, whether directly, or following preliminary growth on non-selective medium, were not a reliable indicator of high ethanologenicity during chemostat culture. In batch culture, the organism appeared to retain its promise for ethanol production from lignocellulosics and concerns that antibiotics may need to be included in all media appear unfounded. Received 13 January 1999/ Accepted in revised form 23 April 1999  相似文献   

15.
The effect of different carbon sources on the expression in Saccharomyces cerevisiae of the SWA2 alpha-amylase gene from Schwanniomyces occidentalis was studied from constructs containing its 5' region (-223 to +15), which were fused in-frame to the lacZ gene coding sequence. Maximal expression was achieved with the non-fermentable substrates ethanol and/or glycerol, whereas lower levels were found with maltose or galactose. In contrast, glucose repressed it, even in the presence of any of these other carbon sources. Deletion analyses of the -233 to -85 SWA2 promoter region permitted the identification of two fragments involved in both glucose repression and ethanol activation. A possible region required for cAMP regulation was localised. The SWA2 promoter contains a MIG1-binding GC box whose deletion caused a five-fold increase in the glucose-repressed reporter expression. Despite this, expression of the SWA2 promoter was not MIG1-dependent.  相似文献   

16.
17.
Chemostat cultivation of Aspergillus niger and other filamentous fungi is often hindered by the spontaneous appearance of morphologic mutants. Using the Variomixing bioreactor and applying different chemostat conditions we tried to optimize morphologic stability in both ammonium- and glucose-limited cultures. In most cultivations mutants with fluffy (aconidial) morphology became dominant. From an ammonium-limited culture, a fluffy mutant was isolated and genetically characterized using the parasexual cycle. The mutant contained a single morphological mutation, causing an increased colony radial growth rate. The fluffy mutant was subjected to transformation and finally conidiospores from a forced heterokaryon were shown to be a proper inoculum for fluffy strain cultivation.  相似文献   

18.
Chemostat culture of Acinetobacter calcoaceticus KB-2 was done under palm oil-limiting conditions for cell production, and variation of cell compositions and yield coefficients were investigated in connection with the specific growth rates. At the concentration of 0.6% palm oil, the productivity of cells and yield coefficient were 4.76 g cells/l/h and 1.18 g cells/g palm oil, respectively, at a practical dilution rate of 0.85 h−1. About 80% of the palm oil was assimilated by the strain, and the maintenance coefficient was 0.035 g palm oil/g cells/h. Although the carbohydrate content remained essentially constant when the growth rate was varied, the lipid, protein, and nucleic acid contents were increased slightly at higher growth rates. Although the protein content increased only 3%, the protein yield coefficient (Yp) increased about 1.5 times over the range of specific growth rates between 0.1 and 0.7 h−1. The increase in Yp was due to the higher protein content of the biomass and to higher values of the cell yield coefficient.  相似文献   

19.
In order to maximize the glucoamylase production by recombinant Saccharomyces cerevisiae in batch culture, first a temperature-controlled expression system for a foreign gene in S. cerevisiae was constructed. A temperature-sensitive pho80 mutant of S. cerevisiae for the PHO regulatory system, YKU131, was used for this purpose. A DNA fragment bearing the promoter of the PHO84 gene, which encodes an inorganic phosphate (Pi) transporter of S. cerevisiae and is derepressed by Pi starvation, was used as promoter. The glucoamylase gene connected with the PHO84 promoter was ligated into a YEp13 vector, designated pKU122. When the temperature-sensitive pho80 ts mutant harboring the plasmid pKU122 is cultivated at a lower temperature, the expression of glucoamylase gene is repressed, but at a higher temperature it is expressed. Next the effect of temperature on the specific growth rate, μ, and specific production rate, ρ, was investigated. Maximum values of ρ and ρ at various temperatures were at 30°C and 34°C, respectively. The optimal cultivation temperature strategy for maximum production of glucoamylase by this recombinant strain in batch culture was then determined by the Maximum principle using the relationships of μ and ρ to the cultivation temperature. Finally, the optimal strategy was experimentally realized by changing the cultivation temperature from Tμ (30°C) to Tρ (34°C) at the switching time, ts. Received 18 September 1997/ Accepted in revised form 07 January 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号