首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacylglycerol (DAG) metabolism has a critical function in Ras-regulated functions in mature T cells, but causal data linking defects in DAG-based signals with altered thymus development are missing. To study the effect of increased DAG metabolism in T-cell development, we engineered a membrane-targeted constitutive active version of DAG kinase-α (DGKα). We show that transgenic expression of constitutive active DGK leads to developmental defects in T cells, with a marked accumulation of immature CD8 thymocytes and a reduction in positive selected populations. These alterations are reflected in the periphery by a CD4/CD8 cell imbalance and general T-cell lymphopenia. The results link DAG metabolism to T-cell homeostasis, and show that correctly controlled generation and consumption of this lipid at the plasma membrane ensure T-cell passage through quality-control checkpoints during differentiation.  相似文献   

2.
Transferrin overexpression alters testicular function in aged mice   总被引:2,自引:0,他引:2  
Many studies have shown a correlation between transferrin (Tf) concentration and sperm yield in several mammalian species. We have used transgenic mice expressing human Tf (hTf) to investigate if overexpression of Tf increases the efficiency of mouse spermatogenesis. We demonstrated that a 36% increase of Tf does not ameliorate the efficiency of mouse spermatogenesis but on the contrary resulted in a 36% decrease of testis sperm reserves. Tf overexpression had no effect on testicular determination and development, however testicular function of these transgenic mice was affected in an age-dependent manner. At 16 months of age, testicular and epididymal weights were significantly reduced. While spermatogenesis was qualitatively normal, testicular functions were perturbed. In fact, testosterone rate after human chorionic gonadotropin (hCG) stimulation was lower in Tf overexpressing mice. Intratesticular concentration of estradiol-17beta was increased and fluid accumulation after ligation of rete testis was more abundant in these transgenic mice. Surprisingly, we found that endogenous Tf levels were also increased in Tf overexpressing mice and we demonstrated for the first time that Tf may serve to upregulate its own expression in testis. Collectively, our data show that Tf overexpression has negative effects on testicular function and that Tf levels require strict regulation in the testis.  相似文献   

3.
In order to examine the influence of chronic alpha1-adrenergic receptor (alpha1-AR) blockade on the thymus structure and T-cell maturation, peripubertal and adult male rats were treated with urapidil (0.20 mg/kg BW/d; s.c.) over 15 consecutive days. Thymic structure and phenotypic characteristics of the thymocytes were assessed by stereological and flow cytometry analysis, respectively. In immature rats, treatment with urapidil reduced the body weight gain and, affecting the volume of cortical compartment and its cellularity decreased the organ size and the total number of thymocytes compared to age-matched saline-injected controls. The percentage of CD4+8- single positive (SP) thymocytes was decreased, while that of CD4-8+ was increased suggesting, most likely, a disregulation in final steps of the positively selected cells maturation. However, alpha1-AR blockade in adult rats increased the thymus weight as a consequence of increase in the cortical size and cellularity. The increased percentage of most immature CD4-8- double negative (DN) cells associated with decreased percentage of immature CD4+8+ double positive (DP) thymocytes suggests a decelerated transition from DN to DP stage of T-cell development. As in immature rats, the treatment in adult rats evoked changes in the relative numbers of SP cells, but contrary to immature animals, favoring the maturation of CD4+8- over CD4-8+ thymocytes. These results demonstrate that: i) chronic blockade of alpha1-ARs affects both the thymus structure and thymocyte differentiation, ii) these effects are age-dependent, pointing out to pharmacological manipulation of alpha1-AR-mediated signaling as potential means for modulation of the intrathymic T-cell maturation.  相似文献   

4.
Kuklina EM 《Ontogenez》2003,34(5):342-357
A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.  相似文献   

5.
6.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

7.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

8.
TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybenzyl(2-aminoethyl)carbamate) which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo.  相似文献   

9.
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.  相似文献   

10.
Summary The response of adult epithelium in contact with heterologous mesenchymes/stromas was studied in three digestive organs (forestomach, glandular stomach, and duodenum). After various tissues were implanted beneath the epithelial layer of adult mice, the epithelial differentiation was examined after sacrifice of animals at intervals up to 24 weeks. In the forestomach and duodenum, the epithelial differentiation was not affected at all by the tissue implantation. In the glandular stomach, in contrast, epithelial cells exhibited altered differentiation in which chief and parietal cells disappeared and were replaced by columnar epithelial cells with PAS-positive granules. These epithelial cells often formed immature villi. Such differentiation-altered columnar epithelium (DACE) was induced by implanting any type of tissue and even by sham operation, indicating that it was induced by disorganization of the tissue-implanted stroma. The size of DACE was significantly influenced by the stage of implanted tissue; 14.5-day fetal mesenchyme induced the largest DACE, and was followed by 16.5-day fetal mesenchyme, adult stroma, and sham operation. These results suggest the importance of stromal organization in maintaining epithelial differentiation in the glandular stomach.  相似文献   

11.
Beta-adrenergic blockade alters whole-body leucine metabolism in humans   总被引:1,自引:0,他引:1  
This study examined the effects of a nonselective beta-blocking agent on whole-body leucine metabolism in humans. Five normal, healthy subjects (4 male, 1 female) underwent a 6-h primed, constant-rate infusion of L-[1-13C]leucine after 5 days of twice daily oral use of 80 mg propranolol and a placebo. Leucine turnover was determined by tracer dilution and leucine oxidation by 13C enrichment of the expired CO2. Propranolol decreased the total daily energy expenditure from 1,945 +/- 177.5 to 1,619 +/- 92.5 kcal/day (P less than 0.05). A fasting associated decrease in blood glucose and an attenuated rise in free fatty acids and ketones were observed during beta-blockade. Propranolol also increased plasma leucine concentrations (73.1 +/- 8.7 to 103.4 +/- 7.3 mumol/l; P less than 0.05) and leucine oxidation (13.2 +/- 1.2 to 17.1 +/- 1.3 mumol.kg-1.h-1; P less than 0.05), although leucine turnover was not significantly altered (100.5 +/- 7.3 vs. 126.0 +/- 12.3 mumol.kg-1.h-1). In addition, the urinary urea nitrogen-to-creatinine ratio was greater during propranolol administration (0.24 +/- 0.04 vs. 0.34 +/- 0.02 mol/g; P less than 0.05). These data suggest that the beta-adrenergic system plays a role in the modulation of whole-body leucine metabolism in humans. Whether these changes are the result of a direct effect on skeletal muscle or an indirect effect mediated by altering the fuel supply to skeletal muscle cannot be discriminated by the present study.  相似文献   

12.
Immune responses to malaria infections are characterized by strong T and B cell activation, which, in addition of potentially causing immunopathology, are of poor efficacy against the infection. It is possible that the thymus is involved in the origin of immunopathological reactions and a target during malaria infections. This work was developed in an attempt to further clarify these points. We studied the sequential changes in the thymus of CBA mice infected with Plasmodium berghei ANKA, a model in which 60-90% of the infected animals develop cerebral malaria. During the acute phase of infection, different degrees of thymocyte apoptosis were recorded. (1) starry-sky pattern of diffuse apoptosis with maintenance of cortical-medullary structure; (2) intense apoptosis with cortical atrophy, with absence of large cells; (3) severe cortical thymocyte depletion, resulting in cortical-medullary inversion. In the latter, only residual clusters of small thymocytes were observed within the framework of epithelial cells. The intensity of thymus alterations could not be associated with the degree of parasitemia, the expression of clinical signs of cerebral malaria or intensity of brain lesions. The implications of these events for malaria immunity and pathology are discussed.  相似文献   

13.
Retinoic acid alters epithelial differentiation during palatogenesis.   总被引:1,自引:0,他引:1  
Retinoids are teratogenic in humans and animals, producing a syndrome of craniofacial malformations that includes cleft palate. This study investigates the mechanism through which retinoic acid induces cleft palate. Murine palatogenesis after exposure to retinoic acid in utero is compared to normal development and to alterations observed after exposure in organ culture to retinoic acid or epidermal growth factor (EGF). Human embryonic palatal shelves were placed in the organ culture system and the responses to retinoic acid and EGF were compared to those of the murine palatal shelves. Growth factors play a role in normal development and are found in the embryonic palate. In other cell culture systems, retinoids alter the expression of EGF receptors. Our results suggest that in the medial epithelial cells of the palate, retinoic acid sustains the expression of the EGF receptor and the binding of EGF at a time when the expression in control medial cells has declined, and these control cells subsequently undergo programmed cell death. The continued DNA synthesis, proliferation, survival, and shift in phenotype of the medial cells is believed to interfere with the adhesion and fusion of opposing palatal shelves, resulting in cleft palate.  相似文献   

14.
T cells developing in the thymus undergo rigorous positive and negative selection to ensure that those exported to peripheral lymphoid organs bear T-cell receptors (TCRs) capable of reacting with foreign antigens but tolerant of self. At each checkpoint, whether a thymocyte survives or dies is determined by antiapoptotic and proapoptotic Bcl-2 family members. We used Mcl-1 transgenic (tg) mice to investigate the impact of elevated expression of antiapoptotic Mcl-1 on thymocyte apoptosis and selection, making a side-by-side comparison with thymocytes from BCL-2tg mice. Mcl-1 was as effective as Bcl-2 at protecting thymocytes against spontaneous cell death, diverse cytotoxic insults and TCR–CD3 stimulation-driven apoptosis. In three different TCR tg models, Mcl-1 markedly enhanced positive selection of thymocytes, as did Bcl-2. In H-Y TCR tg mice, elevated Mcl-1 and Bcl-2 were equally effective at inhibiting deletion of autoreactive thymocytes. However, in the OT-1tg model where deletion is mediated by a peripheral antigen whose expression is regulated by Aire, Mcl-1 was less effective than Bcl-2. Thus, the capacity of Mcl-1 overexpression to inhibit apoptosis triggered by TCR stimulation apparently depends on the thymocyte subset subject to deletion, presumably due to differences in the profiles of proapoptotic Bcl-2 family members mediating the deletion.  相似文献   

15.
Cripto-1 is an epidermal growth factor-Cripto/FRL1/Cryptic family member that plays a role in early embryogenesis as a coreceptor for Nodal and is overexpressed in human tumors. Here we report that in the two-stage mouse skin carcinogenesis model, Cripto-1 is highly up-regulated in tumor promoter-treated normal skin and in benign papillomas. Treatment of primary mouse keratinocytes with Cripto-1 stimulated proliferation and induced expression of keratin 8 but blocked induction of the normal epidermal differentiation marker keratin 1, changes that are hallmarks of tumor progression in squamous cancer. Chemical or genetic blockade of the transforming growth factor (TGF)-beta1 signaling pathway using the ALK5 kinase inhibitor SB431542 and dominant negative TGF-beta type II receptor, respectively, had similar effects on keratinocyte differentiation. Our results show that Cripto-1 could block TGF-beta1 receptor binding, phosphorylation of Smad2 and Smad3, TGF-beta-responsive luciferase reporter activity, and TGF-beta1-mediated senescence of keratinocytes. We suggest that inhibition of TGF-beta1 by Cripto-1 may play an important role in altering the differentiation state of keratinocytes and promoting outgrowth of squamous tumors in the mouse epidermis.  相似文献   

16.
The LMO2 and TAL1 genes were first identified via chromosomal translocations and later found to encode proteins that interact during normal erythroid development. Some T cell leukaemia patients have chromosomal abnormalities involving both genes, implying that LMO2 and TAL1 act synergistically to promote tumorigenesis after their inappropriate co-expression. To test this hypothesis, transgenic mice were made which co-express Lmo2 and Tal1 genes in T cells. Dimers of Lmo2 and Tal1 proteins were formed in thymocytes of double but not single transgenic mice. Furthermore, thymuses of double transgenic mice were almost completely populated by immature T cells from birth, and these mice develop T cell tumours approximately 3 months earlier than those with only the Lmo2 transgene. Thus interaction between these two proteins can alter T cell development and potentiate tumorigenesis. The data also provide formal proof that TAL1 is an oncogene, apparently acting as a tumour promoter in this system.  相似文献   

17.
Extracellular matrix (ECM) induces and maintains the differentiation of epithelial cells, not by totally altering their state of differentiation, but by activating overt differentiation. Recent studies of cultured mammary cells provide an elegant molecular analysis of this kind of progressive cell differentiation. Other studies show that ECM can not only activate and enhance a differentiated state, but can even alter it in bringing about transformation of epithelium to mesenchyme.  相似文献   

18.
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.  相似文献   

19.
A loss of B-cell function in old mice was demonstrated by measuring the in vitro response of lymphoid cells to the B-cell polyclonal activator, LPS (lipopolysaccharide), and the in vivo response to the thymus-independent antigen, pneumococcal polysaccharide type III (SIII). The reduced mitogenic reactivity of lymphoid cells from old compared with young mice could not be explained by a shift in kinetics of the responding cells. When LPS cultures were carried out in the presence of colchicine, fewer cells from old mice were found to respond to the mitogenic signal. The total number of B cells assessed by labelling with either anti-immunoglobulin serum or antigen-antibody complexes was not decreased in old animals. Taken together, these results are consistent with a qualitative rather than a quantitative loss of B-cell function with age. They did not, however, exclude the possibility of depletion of an LPS-reactive sub-population of B cells. Since the number of LPS-reactive cells could not be determined directly, the antibody response of old mice to SIII was investigated. The decreased level of antibody production by old mice to SIII was not due to a shift in kinetics of the responding cells. Extracellular influences were excluded by showing that the reduced responsiveness of old spleen cells persisted after adoptive transfer into young irradiated recipients. Furthermore, pretreatment of cells from old mice with anti-Thy.1 serum and complement before transfer did not enhance their antibody-forming potential. The loss of B-cell activity with age could not, therefore, be explained in terms of an increase in T-cell-dependent suppressive effects. Support for an intrinsic defect in the B cell itself came from the demonstration of similar numbers of SIII-binding cells in normal spleens from old and young mice. Following immunisation, a shift toward low intensity binding cells was observed in spleens from both old and young mice. This shift was, however, less pronounced in the case of old cells, which is consistent with an age-related decline in transformation potential of antibody-forming-cell precursors. The conclusion was, therefore, reached that the reduction with age in B-cell as well as T-cell function is due to a qualitative rather than a quantitative defect in lymphocytes themselves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号