首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isolated perfused rat hindlimb preparation was used to study the impact of local muscle adaptations induced by endurance exercise training on muscle performance and peak muscle oxygen consumption. Rats were trained for 12-15 wk by a running program (30 m/min up a 15% grade for 1 h/day 5 days/wk) shown previously to increase muscle mitochondrial enzyme activity. Sedentary (n = 11) and trained (n = 11) hindlimbs of similar size were perfused with a similar inflow (12.1 ml/min) at a similar oxygen content (18.1 ml O2/100 ml blood). Tetanic contractions (100 ms at 100 Hz) at 4, 8, 15, 30, 45, and 60/min were elicited in consecutive order. Initial tension was better maintained by muscles of trained animals at all frequencies above 4 tetani/min (P less than 0.05). Oxygen consumption (mumol.min-1.g-1) increased similarly in both groups at the lower contraction frequencies but was greater (P less than 0.05) in the trained [3.52 +/- 0.32 (SE)] than in the sedentary (2.44 +/- 0.31) group at 60 tetani/min. The peak oxygen consumption of the trained group (3.93 +/- 0.27) was 20% greater (P less than 0.05) than that of the sedentary group (3.28 +/- 0.28) when peak values for each animal, irrespective of the contraction condition, are compared. Blood flows to the contracting muscle (approximately 100 ml.min-1.g-1) and, therefore, oxygen deliveries (mumol.min-1.g-1) were not different between sedentary (7.99 +/- 0.56) and trained groups (8.35 +/- 0.61). Thus the 20% higher peak oxygen consumption was achieved by a greater oxygen extraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Skeletal muscle displays remarkable plasticity, enabling substantial adaptive modifications in its metabolic potential and functional characteristics in response to external stimuli such as mechanical loading and nutrient availability. Contraction-induced adaptations are determined largely by the mode of exercise and the volume, intensity, and frequency of the training stimulus. However, evidence is accumulating that nutrient availability serves as a potent modulator of many acute responses and chronic adaptations to both endurance and resistance exercise. Changes in macronutrient intake rapidly alter the concentration of blood-borne substrates and hormones, causing marked perturbations in the storage profile of skeletal muscle and other insulin-sensitive tissues. In turn, muscle energy status exerts profound effects on resting fuel metabolism and patterns of fuel utilization during exercise as well as acute regulatory processes underlying gene expression and cell signaling. As such, these nutrient-exercise interactions have the potential to activate or inhibit many biochemical pathways with putative roles in training adaptation. This review provides a contemporary perspective of our understanding of the molecular and cellular events that take place in skeletal muscle in response to both endurance and resistance exercise commenced after acute and/or chronic alterations in nutrient availability (carbohydrate, fat, protein, and several antioxidants). Emphasis is on the results of human studies and how nutrient provision (or lack thereof) interacts with specific contractile stimulus to modulate many of the acute responses to exercise, thereby potentially promoting or inhibiting subsequent training adaptation.  相似文献   

4.
Operation Everest II: adaptations in human skeletal muscle   总被引:3,自引:0,他引:3  
Adaptations in skeletal muscle in response to progressive hypobaria were investigated in eight male subjects [maximal O2 uptake = 51.2 +/- 3.0 (SE) ml.kg-1.min-1] over 40 days of progressive decompression to the stimulated altitude of the summit of Mt. Everest. Samples of the vastus lateralis muscle extracted before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) indicated that maximal activities of enzymes representative of the citric acid cycle, beta-oxidation, glycogenolysis, glycolysis, glucose phosphorylation, and high-energy phosphate transfer were unchanged (P greater than 0.05) at 380 and 282 Torr over initial SL-1 values. After exposure to 282 Torr, however, representing an additional period of approximately 7 days, reductions (P less than 0.05) were noted in succinic dehydrogenase (21%), citrate synthetase (37%), and hexokinase (53%) between SL-2 and 380 Torr. No changes were found in the other enzymes. Capillarization as measured by the number of capillaries per cross-sectional area (CC/FA) was increased (P less than 0.05) in both type I (0.94 +/- 0.8 vs. 1.16 +/- 0.05) and type II (0.84 +/- 0.07 vs. 1.05 +/- 0.08) fibers between SL-1 and SL-2. This increase was mediated by a reduction in fiber area. No changes were found in fiber-type distribution (type I vs. type II). These findings do not support the hypothesis, at least in humans, that, at the level of the muscle cell, extreme hypobaric hypoxia elicits adaptations directed toward maximizing oxidative function.  相似文献   

5.
Twitch contractile and ultrastructural characteristics of the human triceps surae were determined in six male strength-trained athletes, six endurance-trained athletes, six active controls, and seven sedentary controls of similar height and age. Twitch contraction time in the triceps surae complex was 20% longer in strength-trained and sedentary groups than in endurance-trained or active control groups. In the 15 subjects peak twitch torque and one-half relation time in the triceps surae were 22.6 +/- 7.9 N.m and 91.1 +/- 18.3 ms, respectively. Mean fiber area in the gastrocnemius was approximately 1.6-, 1.7-, and 2.5-fold greater in the active control, endurance-trained, and strength-trained groups, respectively, relative to the sedentary group. Despite these large differences in fiber areas, the fiber fractional volume of the sarcoplasmic reticulum-transverse tubule network averaged 3.38 +/- 0.86% and 5.50 +/- 0.94% in type I and type II fibers, respectively, in all subjects. The fractional fiber volume of cytoplasm and lipid were similar for all four groups. However, mitochondrial volume was approximately 30% lower in both fiber types of the strength-trained group relative to the other groups. This implies that with exercise-induced hypertrophy, the sarcoplasmic reticulum, cytoplasm, and lipid components increase proportionately with contractile protein, whereas the mitochondrial fraction does not. The proportion of type I fibers in the soleus, medial gastrocnemius, and lateral gastrocnemius was 75.2 +/- 8.3, 58.5 +/- 6.1, and 52.4 +/- 4.2%, respectively, and was similar in all subject groups. The results demonstrate that twitch duration is prolonged in strength-trained athletes relative to endurance athletes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
9.
Compensatory metabolic adaptations induced in streptozotocin-diabetic rat skeletal muscle by submaximal endurance training have been investigated. The gastrocnemius muscles of sedentary streptozotocin-diabetic rats were found to have a lower than normal myoglobin content, succinate dehydrogenase activity, and capacity to oxidize pyruvate and palmitate-1-[14C]. The values of these parameters were significantly increased in the diabetic skeletal muscle by the training program, obtaining levels similar to those of normal sedentary animals.  相似文献   

10.
Skeletal muscle has been shown to generate a complex set of reactive oxygen and nitrogen species (ROS) both at rest and during contractile activity. The primary ROS generated are superoxide and nitric oxide and the pattern and magnitude of their generation is influenced by the nature of the contractile activity. It is increasingly clear that the ROS generated by skeletal muscle play an important role in influencing redox-regulated processes that control, at least some of, the adaptive responses to contractile activity. These processes are also recognized to be modified during ageing and in some disease states, providing the potential that interventions affecting ROS activity may influence muscle function or viability in these situations.  相似文献   

11.

Introduction

Muscle symptoms in systemic sclerosis (SSc) may originate from altered skeletal muscle microcirculation, which can be investigated by means of blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI).

Methods

After ethics committee approval and written consent, 11 consecutive SSc patients (5 men, mean age 52.6 years, mean SSc disease duration 5.4 years) and 12 healthy volunteers (4 men, mean age 45.1 years) were included. Subjects with peripheral arterial occlusive disease were excluded. BOLD MRI was performed on calf muscles during cuff-induced ischemia and reactive hyperemia, using a 3-T whole-body scanner (Verio, Siemens, Erlangen, Germany) and fat-suppressed single-short multi-echo echo planar imaging (EPI) with four different effective echo times. Muscle BOLD signal time courses were obtained for gastrocnemius and soleus muscles: minimal hemoglobin oxygen saturation (T2*min) and maximal T2* values (T2*max), time to T2* peak (TTP), and slopes of oxygen normalization after T2* peaking.

Results

The vast majority of SSc patients lacked skeletal muscle atrophy, weakness or serum creatine kinase elevation. Nevertheless, more intense oxygen desaturation during ischemia was observed in calf muscles of SSc patients (mean T2*min -15.0%), compared with controls (-9.1%, P = 0.02). SSc patients also had impaired oxygenation during hyperemia (median T2*max 9.2% vs. 20.1%, respectively, P = 0.007). The slope of muscle oxygen normalization was significantly less steep and prolonged (TTP) in SSc patients (P<0.001 for both). Similar differences were found at a separate analysis of gastrocnemius and soleus muscles, with most pronounced impairment in the gastrocnemius.

Conclusions

BOLD MRI demonstrates a significant impairment of skeletal muscle microcirculation in SSc.  相似文献   

12.
13.
14.
1. Mitochondria were isolated according to their cellular location within the fibers of pooled gastrocnemius and plantaris muscle of the rat. This procedure yields two populations of mitochondria which display different biochemical properties. 2. The adaptive response of these mitochondria populations to the chronic exposure to different elevated energy demands (different modes of exercise training) was investigated. 3. The observed changes in mitochondrial protein content and cytochrome oxidase activity in the respective mitochondria population suggests that each population is capable of independent adaptations. 4. The adaptive response of each mitochondria population, furthermore, was predictable with respect to the metabolic energy demand of the exercise training workload.  相似文献   

15.
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise.  相似文献   

16.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen.  相似文献   

17.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

18.
The creatine kinase (CK) isoenzyme composition was determined in serial gastrocnemius muscle biopsies obtained from 12 male marathon runners. The mean muscle CK-MB composition significantly increased after chronic exercise (training) from 5.3% (pretraining) to 7.7% (premarathon) as well as after acute exercise (postmarathon) to 10.5% of the total CK activity (P less than 0.05). However, no significant differences in total CK activities were detected. Additionally, mitochondrial CK and CK-BB isoenzymes were present in muscle homogenates. A significant correlation was observed in the increase in mean serum total CK (3,322 U/l) and CK-MB (174 U/l) activities 24 h after the race (r = 0.98, P less than 0.05). These results show that gastrocnemius muscle adapts to long-distance training and racing with increased CK-MB activities and imply that skeletal muscle is the major source of elevated serum CK-MB activities in marathon runners.  相似文献   

19.
20.
It is known that exposure to actual or simulated weightlessness is often accompanied by decreased muscle dynamic performance, and increased level of blood lactate accumulation. Decreased mitochondrial content found in fibers of the working muscles is considered to be one of the possible causes for those changes. Studies on oxidative potential of the muscle cell (i.e. capacity of the cell to oxidative energy production) under conditions of altered gravity have been carried out since late 70-ties. It was shown that the relatively short term spaceflight and hindlimb suspension induced significant decrease oxidative enzyme activities and mitochondrial volume density in rat fast muscle. However postural soleus muscle failed to exhibit similar changes, although the absolute mitochondrial content was found to be sufficiently lower after exposure to simulated microgravity. This phenomenon allowed to conclude that the pronounced soleus fiber atrophy masked the proportional absolute decrease in oxidative potential which failed to be revealed as subsequent changes in mitochondrial volume density and oxidative enzyme activity. It is also important, that biosatellite studies exposed considerable changes in mitochondria distribution pattern inside m. soleus fibers: volume density of mitochondria (and, correspondingly, activity of oxidative enzymes) increases (or does not change) in the center of fiber, and decreases at its periphery, in subsarcolemmal area. However the time course of mitochondrial alterations development (particularly during long-duration exposures to real or simulated microgravity) and some peculiarities of the mitochondria distribution were not described yet. Also, materials dealing with simultaneous time-course comparative analysis of mitochondrial characteristics and indices of physiological cost of submaximal exercise are very rare. The present paper is purposed to compare the data, obtained in several experimental studies, allowed to analyze the possible contribution of muscle mitochondria changes to changes in metabolic cost of submaximal exercise and the time-course dynamics of mitochondrial characteristics under conditions of actual or simulated gravitational unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号