首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
GLABRA3 (GL3) encodes a bHLH protein that interacts with the WD repeat protein, TTG1. GL3 overexpression suppresses the trichome defect of the pleiotropic ttg1 mutations. However, single gl3 mutations only affect the trichome pathway with a modest trichome number reduction. A novel unlinked bHLH-encoding locus is described here, ENHANCER OF GLABRA3 (EGL3). When mutated, egl3 gives totally glabrous plants only in the gl3 mutant background. The double bHLH mutant, gl3 egl3, has a pleiotropic phenotype like ttg1 having defective anthocyanin production, seed coat mucilage production, and position-dependent root hair spacing. Furthermore, the triple bHLH mutant, gl3 egl3 tt8, phenocopies the ttg1 mutation. Yeast two-hybrid and plant overexpression studies show that EGL3, like GL3, interacts with TTG1, the myb proteins GL1, PAP1 and 2, CPC and TRY, and it will form heterodimers with GL3. These results suggest a combinatorial model for TTG1-dependent pathway regulation by this trio of partially functionally redundant bHLH proteins.  相似文献   

5.
GLABRA2 (GL2)/ATHB-10 encodes a homeodomain protein that belongs to the homeodomain-leucine zipper family. Mutant studies have revealed that this gene is involved in trichome, root-hair and seed-coat development. We used reverse genetics to investigate the role of GL2 in trichome development. A transgene consisting of a GL2-coding fragment preceded by the cauliflower mosaic virus 35S promoter (35S::GL2) did not complement defects in the gl2-1 mutant. In the wild-type genetic background, 35S::GL2 caused gl2-mutant-like and scarcely viable phenotypes, suggesting that ectopic overexpression of GL2 interrupts endogenous GL2 function in trichome development and is toxic to plants. On the other hand, another GL2 transgene containing the GL2 promoter (pGL2::GL2) complemented the gl2-1 mutation. Entopically additive expression of GL2 by introduction of pGL2::GL2 in the wild-type genetic background noticably increased the number of trichomes and induced production of adjacent trichomes. Consistent with this result, gl2-1/+ heterozygous leaves, whose GL2 expression was expected to decrease, had fewer trichomes than +/+ leaves. These results indicate that GL2 quantitatively regulates the frequency of trichome initiation and is involved in determining trichome spacing.  相似文献   

6.
This is an addendum to our recent paper published in The Plant Journal (52:352–61). The major findings were: (1) trichomes on the leaves of gl3-sst sim double mutants developed as large multi-cellular clusters whereas wild type trichomes are composed of single cells; (2) ectopic CYCD3;1 expression in gl3-sst trichomes also resulted in trichome cluster formation; and (3) that GL1 expression is prolonged in the gl3-sst sim trichome clusters. This addendum shows that ectopic CYCD3;1 expression in gl3-sst also enhanced GL1 expression. An analysis of the GL1 promoter found two overlapping potential E2F binding sites in a region of the promoter known to be essential for GL1 function. This finding indicates that GL1 may be directly regulated by the activity of a CYCD3/CDKA complex that phosphorylates E2F-RB bound to the GL1 promoter.Key words: plant cell cycle, endoreduplication, glabra1, plant development  相似文献   

7.
8.
Control of plant trichome development by a cotton fiber MYB gene   总被引:33,自引:0,他引:33       下载免费PDF全文
Wang S  Wang JW  Yu N  Li CH  Luo B  Gou JY  Wang LJ  Chen XY 《The Plant cell》2004,16(9):2323-2334
  相似文献   

9.
Marks MD  Feldmann KA 《The Plant cell》1989,1(11):1043-1050
Progeny from a transformed Arabidopsis plant (produced by the Agrobacterium-mediated seed transformation procedure) were found to be segregating for an altered trichome phenotype. The mutant plants have normal leaf trichomes but completely lack trichomes usually found on the stem. The mutation is tightly linked to a T-DNA insert. Complementation analysis with genetically characterized trichome mutants revealed that the new mutation is an allele of the GL1 locus. The new trichome mutant has been designated gl1-43. DNA gel blot analysis indicated that the insert site contains a complex array of at least four tandemly linked T-DNA units oriented as both direct and inverted repeats. A genomic library, constructed using DNA from gl1-43 plants, was used to clone DNA that flanks the left end of the T-DNA insert. The availability of DNA from the region interrupted by the insert has allowed initial characterization of the wild-type GL1 gene and will permit the eventual cloning and sequencing of this developmentally interesting gene.  相似文献   

10.
Homozygous glabra2 (gl2) mutant Arabidopsis thaliana Landsberg erecta plants with only a few rudimentary single spiked trichomes on the leaf margin were transformed with a genomic clone of GL2, resulting in partial restoration of the normal leaf trichome phenotype. The introduced GL2 transgene was configured as part of an FLP recombinase-responsive gene switch, which permitted visibly marked gl2 mutant clonal sectors to be generated by FLP recombinase-mediated deletion of the GL2 transgene with concomitant activation of a previously silent beta-glucuronidase (GUS) marker gene. GUS marked sectors extending through all three leaf cell layers (L1, L2, and L3) displayed the anticipated gl2 mutant phenotype, whereas immediately adjacent unmarked tissue, and unmarked tissues overlaying GUS sectors restricted to the L2 and/or L3 cell layers, retained the GL2 restored phenotype. These data support the view that the GL2 gene product acts in a region-autonomous manner within a single cell layer and indicate that GL2 gene expression in the L1 layer is sufficient for GL2-directed outgrowth of trichomes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins to control many cellular events. The Arabidopsis knockout mutant rpt2a, which contains a defect in the AtRPT2a subunit of the 26S proteasome regulatory particle, showed enlarged leaves caused by increased cell size that correlated with increased ploidy caused by extended endoreduplication. To clarify the role of RPT2a in endoreduplication control, trichome development was genetically examined in further detail. RHL1 and GL3 encode proteins that have a role in the positive regulation of endocycle progression in trichomes. The rhl1 mutants are stalled at 8C and have trichomes with only a single branch. The rpt2a mutation did not alter the rhl1 mutant phenotype, and trichomes of double rpt2a rhl1 mutants resembled that of single rhl1 mutants. On the other hand, the rpt2a mutation suppressed the gl3 phenotype (stalled at 16C, two trichome branches), and trichomes of the double rpt2a gl3 mutant resembled those of the wild type (WT) plants. Together, these data suggest that RPT2a functions to negatively regulate endocycle progression following completion of the third endoreduplication step mediated by RHL1 (8C–16C).  相似文献   

18.
19.
Cell differentiation is generally tightly coordinated with the cell cycle, typically resulting in a nondividing cell with a unique differentiated morphology. The unicellular trichomes of Arabidopsis are a well-established model for the study of plant cell differentiation. Here, we describe a new genetic locus, SIAMESE (SIM), required for coordinating cell division and cell differentiation during the development of Arabidopsis trichomes (epidermal hairs). A recessive mutation in the sim locus on chromosome 5 results in clusters of adjacent trichomes that appeared to be morphologically identical 'twins'. Upon closer inspection, the sim mutant was found to produce multicellular trichomes in contrast to the unicellular trichomes produced by wild-type (WT) plants. Mutant trichomes consisting of up to 15 cells have been observed. Scanning electron microscopy of developing sim trichomes suggests that the cell divisions occur very early in the development of mutant trichomes. WT trichome nuclei continue to replicate their DNA after mitosis and cytokinesis have ceased, and as a consequence have a DNA content much greater than 2C. This phenomenon is known as endoreduplication. Individual nuclei of sim trichomes have a reduced level of endoreduplication relative to WT trichome nuclei. Endoreduplication is also reduced in dark-grown sim hypocotyls relative to WT, but not in light-grown hypocotyls. Double mutants of sim with either of two other mutants affecting endoreduplication, triptychon (try) and glabra3 (gl3) are consistent with a function for SIM in endoreduplication. SIM may function as a repressor of mitosis in the endoreduplication cell cycle. Additionally, the relatively normal morphology of multicellular sim trichomes indicates that trichome morphogenesis can occur relatively normally even when the trichome precursor cell continues to divide. The sim mutant phenotype also has implications for the evolution of multicellular trichomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号