首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Plasma fibronectin (FN) of buffalo (Babulis babulis) was purified to apparent homogeneity, using gelatin-Sepharose and heparin-Sepharose affinity columns. It was found to have two subunits of molecular mass 246 kDa and 228 kDa, on SDS-gel. Its immunological cross-reactivity with anti-human plasma FN was confirmed by Western blotting. The amino acid composition was found to be similar to that of human and bovine plasma FNs. Buffalo plasma FN contained 2.23% neutral hexoses and 1.18% sialic acids. No titrable sulfhydryl group could be detected in the absence of denaturant. Reaction with DTNB indicated 3.4 sulfhydryl groups in the molecule, whereas BDC-OH titration gave a value of 3.8 -SH groups in buffalo plasma FN. Stoke's radius, intrinsic viscosity, diffusion coefficient and frictional ratio indicated that buffalo plasma FN did not have a compact globular conformation at physiological pH and ionic strength. Molecular dimensions (average length, 120 nm; molar mass to length ratio, 3950 nm(-1) and mean diameter, 2.4 nm) as revealed by rotary shadowing electron microscopy further supported the extended conformation of buffalo plasma FN. These results show that buffalo plasma FN has similar properties as that of human plasma FN.  相似文献   

2.
In our previous study, we have observed that the isolated coat proteins (CP) of the Potyvirus Potato Virus A (PVA) virions exhibit an intrinsic tendency to self-associate into various multimeric forms containing some fractions of cross-β-structure. In this report, we studied the effect of solution conditions on the structure and dissociation of isolated PVA CP using a number of complementary physicochemical methods. Analysis of the structure of PVA CP in solution was performed by limited proteolysis with MALDI-TOF mass spectrometry analysis, transmission electron microscopy, intrinsic fluorescence spectroscopy, and synchrotron small angle X-ray scattering (SAXS). Overall structural characteristics of PVA CP obtained by combination of these methods and ab initio shape reconstruction by SAXS show that PVA CP forms large multi-subunit particles. We demonstrate that a mixture of compact virus-like particles (VLP) longer than 30 nm is assembled on dialysis of isolated CP into neutral pH buffer (at low ionic strength). Under conditions of high ionic strength (0.5 M NaCl) and high pH (pH 10.5), PVA dissociates into low compactness oval-shaped particles of approximately 30 subunits (20–30 nm). The results of limited trypsinolysis of these particles (enzyme/substrate ratio 1:100, 30 min) showed the existence of non-cleavable core-fragment, consisting of 137 amino acid residues. Trypsin treatment removed only a short N-terminal fragment in the intact virions. These particles are readily reassembled into regular VLPs by changing pH back to neutral. It is possible that these particles may represent some kind of intermediate in PVA assembly in vitro and in vivo.  相似文献   

3.
Human plasma fibronectin digested with cathepsin D yields a number of fragments: an N-terminal fibrin-binding 30K3 fragment, a gelatin-binding 40K fragment, a 70K fragment containing the 30K and 40K domains, a central 95/105K fragment and a heparin-binding 140K fragment. The 140K fragment is linked by disulphide bonds and forms the C-terminal ends of the fibronectin. Electron microscopy of rotary-shadowed specimens revealed the 40K, 70K and 95/105K fragments as thin rods (diameter about 2.2 nm) with lengths of 13, 25 and 25 nm. respectively. These dimensions agree with the distances between flexible, proteasesusceptible regions in individual fibronectin strands determined previously. The 140K fragment appeared as a V-shaped structure with two arms 21.5 nm long emerging at a preferred angle of about 70 °. The distribution function of this angle was identical to that observed for the angle between the two arms of intact fibronectin. The free energy required for a distortion of this angle by 60 ° was estimated to be 8 kJ/mol. Reduced and alkylated fibronectin was visualized as single strands (about 55 nm long) with kinks of variable angles corresponding to sites of increased flexibility. The hydrodynamic shapes of the fragments in solution were similar to the shapes observed by electron microscopy, indicating that the individual domains of fibronectin maintain their native structure after proteolytic separation. This was also demonstrated by circular dichroism (c.d.) studies. The c.d. spectrum and the thermal melting curve of native fibronectin were well represented by a linear combination of the contributions of the fragments, indicating conformational independence of the domains. The data support earlier findings that fibronectin consists of two thin strands (length about 60 nm), which are composed of several domains separated by flexible and protease-susceptible intervening regions. This very extended structure agrees with the small sedimentation constant found for fibronectin under conditions where electrostatic interactions between domains are repulsive or depressed. Probably because of such interactions the sedimentation constant is larger at neutral pH and low ionic strength, but even under these conditions a very asymmetric shape is still maintained.  相似文献   

4.
Binding of fibronectin by the acute phase reactant C-reactive protein   总被引:4,自引:0,他引:4  
Following tissue injury, the concentration of C-reactive protein (CRP) is known to increase in plasma rapidly, while that of fibronectin often decreases. We now report that CRP immobilized onto polystyrene surfaces binds soluble plasma fibronectin (Kd = 1.5 X 10(-8) M). The binding of fibronectin by CRP was relatively sensitive to ionic conditions, being maximal at physiological NaCl concentrations. A decrease of pH from neutral to 5-6 greatly enhanced the binding of fibronectin by CRP. Ca2+ ions at greater than 1 mM inhibited binding. No binding was observed between fibronectin and CRP in soluble phase. CRP was found also to bind fibrinogen, which competed with fibronectin for CRP-binding sites. This was shown to explain why fibronectin was effectively bound from serum but not from plasma by immobilized CRP. The amount of CRP immobilized was critical in binding fibronectin; a too dense molecular layer of CRP inhibited the binding, as did the postsaturation of free surfaces with albumin, which itself was not bound by CRP. Soluble fibronectin agglutinated CRP-coated latex particles. Most or all of the CRP-binding activity in the fibronectin molecule was localized to the 120-140-kilodalton fragment, which also contains cell-binding and heparin-binding domains of fibronectin. The results provide a link between acute phase response and tissue repair.  相似文献   

5.
银杏叶提取物分子聚集形态   总被引:1,自引:0,他引:1  
研究银杏叶提取物水溶液中多组分分子间的相互作用;采用动态光散射法和透射电镜扫描法,探讨银杏叶提取物水溶液是否存在分子聚集形态、分子聚集体粒径大小以及体外模拟不同胃肠pH环境条件下,银杏叶提取物水溶液分子聚集体的稳定性.实验数据证实银杏叶提取物水溶液存在纳米级分子聚集体,分子聚集体粒径在60 nm至100 nm之间;水溶液中1 nm以下的粒子大都是一些成分以单分子形式存在;随着溶液的浓度增加,分子聚集体的粒径也增大;在不同pH条件胃肠环境下,银杏叶提取物水溶液分子聚集体可以稳定存在.  相似文献   

6.
Atomic force microscopy (AFM) was used to image reovirus double stranded RNA (dsRNA) deposited from diluted buffer solution onto a chemically treated mica surface. This procedure allows AFM images of dsRNA molecules to be obtained with a quality close to that obtained with conventional electron microscopy. The length of the molecules were measured directly on a computer display using the digitally acquired images. The lengths of the molecules varied between 0.2 and 1.8 microns. Statistical analysis showed a multimodal distribution with clear maxima at 0.4, 0.65 and 1.05 microns. These data are in a good agreement with those obtained by electron microscopy and gel electrophoresis.  相似文献   

7.
We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.  相似文献   

8.
C S Lai  N M Tooney  E G Ankel 《Biochemistry》1984,23(26):6393-6397
Human plasma fibronectin has been investigated by electron spin resonance (ESR) spin-label methods in conjunction with circular dichroism (CD) and sedimentation techniques to investigate its structure and flexibility in solution. The buried sulfhydryl groups of fibronectin were modified with a maleimide spin-label [Lai, C.-S., & Tooney, N. M. (1984) Arch. Biochem. Biophys. 228, 465-473]. Both conventional and saturation transfer ESR spectra give a rotational correlation time of about (2-3) X 10(-8) s for plasma fibronectin, a value that is at least 40 times faster than the rotational correlation time calculated from the minimal molecular dimensions. This argues that plasma fibronectin is not a compact, globular protein and suggests that the regions of ordered structural domains have a relatively high degree of independent mobility. ESR, CD, and sedimentation measurements showed that many structural features of plasma fibronectin remain unchanged when the pH is decreased from 7.4 to 3.0. On the other hand, ESR results indicate an unfolding of the protein molecule either at pH 11 or in 4 M urea solution. Similarly, the sedimentation coefficient decreases from about 13 to 8.4 S when the pH is raised to 10.8. At pH values above 11, the CD spectrum resembles a random coil; however, some ordered structure is retained either at pH 11 or in 4 M urea. It is likely that the sulfhydryl-containing regions of the molecule are more sensitive to urea or alkali than are portions of the molecule stabilized by intrachain disulfide bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Models of fibronectin.   总被引:4,自引:0,他引:4       下载免费PDF全文
The radius of gyration of human plasma fibronectin was determined by light scattering both under conditions in which the molecule is in an extended conformation (ionic strength 1.01 M, pH 8) and close to its native, more compact conformation (ionic strength 0.16 M, pH 8). These values were found to be 17.5 +/- 0.8 nm and 10.7 +/- 0.9 nm respectively, for a constant mol. wt of 533,000 +/- 8000, in excellent agreement with the value of 520,000 deduced from its known composition. A set of models, each made of two identical, end-to-end joined chains of 28 beads, was then constructed, and their calculated physico-chemical parameters were compared with those available for the whole fibronectin molecule and for some of its proteolytic fragments in both conformations. Two possible models for the circulating form are presented here: in both, the fibronectin molecule is in a compact, tangled conformation, with the amino-terminal end of one chain folded over to the carboxy end of itself or of the other chain either in a hairpin or in a circular fashion. With the exception of the carboxy-terminal fibrin(ogen)-binding domains, all the domains appear to be well exposed to the solvent, and thus free to interact with potential ligands.  相似文献   

10.
Atomic force microscopy of the myosin molecule.   总被引:2,自引:1,他引:1       下载免费PDF全文
P Hallett  G Offer    M J Miles 《Biophysical journal》1995,68(4):1604-1606
Atomic force microscopy (AFM) has been used to study the structure of rabbit skeletal muscle myosin deposited onto a mica substrate from glycerol solution. Images of the myosin molecule have been obtained using contact mode AFM with the sample immersed in propanol. The molecules have two heads at one end of a long tail and have an appearance similar to those prepared by glycerol deposition techniques for electron microscopy, except that the separation of the two heads is not so well defined. The average length of the tail (155 +/- 5 nm) agrees well with previous studies. Bends in the myosin tail have been observed at locations similar to those observed in the electron microscope. By raising the applied force, it has been possible locally to separate the two strands of the alpha-helical coiled-coil tail. We conclude that the glycerol-mica technique is a useful tool for the preparation of fibrous proteins for examination by scanning probe microscopy.  相似文献   

11.
DNA conformational behavior in the presence of non-stoichiometric mixtures of two oppositely charged surfactants, cetyltrimethylammonium bromide and sodium octyl sulfate, was directly visualized in an aqueous solution with the use of a fluorescence microscopy technique. It was found that in the presence of cationic-rich catanionic mixtures, DNA molecules exhibit a conformational transition from elongated coil to compact globule states. Moreover, if the catanionic mixtures form positively charged vesicles, DNA is adsorbed onto the surface of the vesicles in a collapsed globular form. When anionic-rich catanionic mixtures are present in the solution, no change in the DNA conformational behavior was detected. Cryogenic transmission electron microscopy, as well as measurements of translational diffusion coefficients of individual DNA chains, supported our optical microscopy observations.  相似文献   

12.
13.
The oxidation-reduction potential values for the two electron transfers to glucose oxidase were obtained at pH 5.3, where the neutral radical is the stable form, and at pH 9.3, where the anion radical is the stable form. The midpoint potentials at 25 degrees were: pH 5.3 EFl1ox + e- H+ equilibrium EFlH. Em1 = -0.063 +/- 0.011 V EFlH. + e- + H+ equilibrium EFlredH2 Em2 = -0.065 +/- 0.007 V pH 9.3 EFlox + e- EFi- Em1 = -0.200 +/- 0.010 V EFi- + e- + H+ equilibrium EFlredH- Em2 = -0.240 +/- 0.005 V All potentials were measured versus the standard hydrogen electrode (SHE). The potentials indicated that glucose oxidase radicals are stabilized by kinetic factors and not by thermodynamic energy barriers. The pK for the glucose oxidase radical was 7.28 from dead time stopped flow measurements and the extinction coefficient of the neutral semiquinone was 4140 M-1 cm-1 at 570 nm. Both radical forms reacted with oxygen in a second order fashion. The rate at 25 degrees for the neutral semiquinone was 1.4 X 10(4) M-1 s-1; that for the anion radical was 3.5 X 10(4) M-1 s-1. The rate of oxidation of the neutral radical changed by a factor of 9 for a temperature difference of 22 degrees. For the anion radical, the oxidation rate changed by a factor of 6 for a 22 degrees change in temperature. We studied the oxygen reactivity of the 2-electron reduced form of the enzyme over a wide wavelength range and failed to detect either oxygenated flavin derivatives or semiquinoid forms as intermediates. The rate of reoxidation of fully reduced glucose oxidase at pH 9.3 was dependent on ionic strength.  相似文献   

14.
Separation and analysis of the major forms of plasma fibronectin   总被引:4,自引:0,他引:4  
Human plasma fibronectin exists in circulation in multiple molecular forms that are distinguishable by SDS-polyacrylamide gel electrophoresis (zone I, approx. 450 kDa dimers; zone II, 190-235 kDa; Zone III, 146-175 kDa). (Chen, A.B., Amrani, D.L. and Mosesson, M.W. (1977) Biochim. Biophys. Acta 493, 310-322). We report here on investigations of plasma fibronectin that had been purified from the 'heparin-precipitable fraction' of plasma by DEAE-cellulose chromatography using buffers containing a chaotropic salt (KSCN). Zone I fibronectin and zone II fibronectin were subsequently separated by Sepharose CL-6B chromatography in the presence of 0.3 M KSCN. Electrophoresis of reduced zone I fibronectin dimers showed the presence of three types of subunits (i.e., 220 kDa, 215 kDa, 207 kDa), evidently all having the same NH2-terminal sequence. Subunits of this size were also found in reduced zone II fibronectin, as well as another polypeptide of 190 kDa, the latter amounting to under 5% of the total. Unreduced zone I fibronectin was resolved by gel electrophoresis into a doublet. The upper component amounted to approx. 90% of the total and was comprised of 220 kDa and/or 215 kDa subunits; the lower component contained 207 kDa plus a 220 kDa or 215 kDa subunit. Scanning transmission electron microscopy indicated that under physiologic conditions zone II fibronectin molecules, like those in zone I, exist as pleiomorphic, loosely folded structures (approx. 16 X 8-12 nm) that are somewhat smaller than dimeric zone I molecules (approx. 24 X 16 nm). Circular dichroic spectral analyses suggests that both types have similarly folded local domains. Affinity chromatography experiments revealed a relative decrease in the binding of zone II fibronectin to gelatin but no difference from zone I fibronectin with respect to heparin or fibrin binding.  相似文献   

15.
We have used electron microscopy and solubility measurements to investigate the assembly and structure of purified human platelet myosin and myosin rod into filaments. In buffers with ionic strengths of less than 0.3 M, platelet myosin forms filaments which are remarkable for their small size, being only 320 nm long and 10-11 nm wide in the center of the bare zone. The dimensions of these filaments are not affected greatly by variation of the pH between 7 and 8, variation of the ionic strength between 0.05 and 0.2 M, the presence or absence of 1 mM Mg++ or ATP, or variation of the myosin concentration between 0.05 and 0.7 mg/ml. In 1 mM Ca++ and at pH 6.5 the filaments grow slightly larger. More than 90% of purified platelet myosin molecules assemble into filaments in 0.1 M KC1 at pH 7. Purified preparations of the tail fragment of platelet myosin also form filaments. These filaments are slightly larger than myosin filaments formed under the same conditions, indicating that the size of the myosin filaments may be influenced by some interaction between the head and tail portions of myosin molecules. Calculations based on the size and shape of the myosin filaments, the dimensions of the myosin molecule and analysis of the bare zone reveal that the synthetic platelet myosin filaments consists of 28 myosin molecules arranged in a bipolar array with the heads of two myosin molecules projecting from the backbone of the filament at 14-15 nm intervals. The heads appear to be loosely attached to the backbone by a flexible portion of the myosin tail. Given the concentration of myosin in platelets and the number of myosin molecules per filament, very few of these thin myosin filaments should be present in a thin section of a platelet, even if all of the myosin molecules are aggregated into filaments.  相似文献   

16.
Collagen type I displays a typical banding periodicity of 67 nm when visualized by atomic force or transmission electron microscopy imaging. We have investigated collagen fibers extracted from rat tail tendons using atomic force microscopy, under different ionic and pH conditions. The majority of the fibers reproduce the typical wavy structure with 67 nm spacing and a height difference between the peak and the grooves of at least 5 nm. However, we were also able to individuate two other banding patterns with 23+/-2 nm and 210+/-15 nm periodicities. The small pattern showed height differences of about 2 nm, whereas the large pattern seems to be a superposition of the 67 nm periodicity showing height differences of about 20 nm. Furthermore, we could show that at pH values of 3 and below the fibril structure gets dissolved whereas high concentrations of NaCl and CaCl(2) could prevent this effect.  相似文献   

17.
We have performed a very extensive investigation of chromatin folding in different buffers over a wide range of ionic conditions similar to those found in eukaryotic cells. Our results show that in the presence of physiological concentrations of monovalent cations and/or low concentrations of divalent cations, small chicken erythrocyte chromatin fragments and chromatin from HeLa cells observed by transmission electron microscopy (TEM) show a compact folding, forming circular bodies of approximately 35 nm in diameter that were found previously in our laboratory in studies performed under very limited conditions. Since TEM images are obtained with dehydrated samples, we have performed atomic force microscopy (AFM) experiments to analyze chromatin structure in the presence of solutions containing different cation concentrations. The highly compact circular structures (in which individual nucleosomes are not visible as separated units) produced by small chromatin fragments in interphase ionic conditions observed by AFM are equivalent to the structures observed by TEM with chromatin samples prepared under the same ionic conditions. We have also carried out experiments of sedimentation and trypsin digestion of chromatin fragments; the results obtained confirm our AFM observations. Our results suggest that the compaction of bulk interphase chromatin in solution at room temperature is considerably higher than that generally considered in current literature. The dense chromatin folding observed in this study is consistent with the requirement of compact chromatin structures as starting elements for the building of metaphase chromosomes, but poses a difficult physical problem for gene expression during interphase.  相似文献   

18.
The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.  相似文献   

19.
As part of the desire to save the environment through “green” chemistry practices, we herein report an environmentally benign synthesis of silver nanoparticles (Ag-NPs) using cellulose extracted from an environmentally problematic aquatic weed, water hyacinth (WH), as both reducing and capping agent in an aqueous medium. By varying the pH of the solution and reaction time, the temporal evolutions of the optical and morphological properties of the as-synthesised Ag-NPs were investigated. The as-synthesised cellulose capped silver nanoparticles (C–Ag-NPs) were characterised using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The maximum surface plasmon resonance (SPR) peak decreased as the pH increased indicating that an increase in the pH of the solution favoured the formation of smaller particles. In addition, instantaneous change in the colour of the solution from colourless to brown within 5 min at pH 11 showed that the rate of reduction is faster at this pH compared to those at lower pH. The TEM micrographs showed that the materials are small, highly monodispersed and spherical in shape. The average particle mean diameters were calculated to be 5.69 ± 5.89 nm, 4.53 ± 1.36 nm and 2.68 ± 0.69 nm nm at pH 4, 8 and 11 respectively. The HRTEM confirmed the crystallinity of the material while the FTIR spectra confirmed the capping of the as-synthesised Ag-NPs by the cellulose. It has been shown therefore that based on this synthetic method, this aquatic plant can be used to the advantage of mankind.  相似文献   

20.
We have determined the structure of plasma fibronectin by electron microscopy of shadowed specimens. the 440,000 molecular weight, dimeric molecule appears to be a long, thin, highly flexible strand. The contour length of the most extended molecules is 160 nm, but a distribution of lengths down to 120 nm was observed, indicating flexibility in extension as well as in bending. The average diameter of the strand is 2 nm and there are no large globular domains. the large fragments produced by limited digestion with plasmin are not globular domains but are segments of the strand, whose length corresponds to the molecular weight of the polypeptide chain. We conclude that each polypeptide chain of the dimeric molecule spans half the length of the strand, with their carboxyl termini joined at the center of the strand and their amino termini at the ends. This model is supported by images of fibronectin-fibrinogen complexes, in which the fibrinogen is always attached to an end of the fibronectin strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号