首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the initial pH and the concentrations of thrombin, fibrinogen, and Ca2+ upon the rate of pH change associated with clotting of bovine fibrinogen by human thrombin was investigated at pH 6.80, 7.80, and 8.80, 0.3 ionic strength, 25 degrees C, and 19.5 mg/mL final fibrinogen concentration. At pH 6.80 and 7.80, the reaction was first order, with rate constant k1. At pH 8.80, a first-order reaction of the release of H+ (k1) was followed by a partial rebinding of these in a reaction consecutive to the first one (k2). At each of the above pH values, k1 was proportional to thrombin concentration in the 0.05-3.0 min-1 range investigated. The k1 constants were 0.111 +/- 0.001, 0.250 +/- 0.005, and 0.190 +/- 0.002 min-1 (NIH thrombin units)-1 mL-1 at pH 6.80, 7.80, and 8.80, respectively. Plots of log rate vs log thrombin concentration of these data were linear with slopes close to 1 at all three pH values. The rate of the second reaction (k2) was independent of both the thrombin and the initial fibrinogen concentration. The pH dependence of k1 exhibited a bell-shaped curve that could be resolved into the effect of one group with a pK of 7.27 that increased the rate and another with a pK of 9.22 that decreased the rate. With constant thrombin concentration but varying fibrinogen concentration, plots of 1/k1 vs [fibrinogen] were linear, but the lines did not pass through the origin. From the slope and intercept, kcat and KM of the Michaelis-Menten equation could be calculated. The same parameters were obtained also from initial velocity vs [fibrinogen] plots. Values of kcat were consistent and accurate; those of KM were more scattered. KM was (22.4-34.2) X 10(-6) M at pH 6.80 and approximately 7 X 10(-6) M in the pH 7.26-8.80 range. The latter value, pertaining to the release of H+ ions, is in agreement with values in the literature for KM of the release of fibrinopeptide A by thrombin in the 7.4-8.0 pH range. The value of kcat s-1 (unit of thrombin)-1 mL-1 increases from 1.2 X 10(-10) s-1 unit of thrombin-1 mL-1 at pH 6.80 to 2.46 X 10(-10) at pH 7.80 and then decreases to 2.01 X 10(-10) 10(-1) (units of thrombin)-1 mL-1 at pH 8.80. The kcat values are significantly lower than those in the literature for the release of fibrinopeptide A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Thrombomodulin acts as a linear competitive inhibitor of thrombin with respect to the substrate fibrinogen. In the present study the effect of thrombomodulin on the activity of thrombin with fragments of the A alpha and B beta chain of fibrinogen has been examined. The cleavage of fibrinopeptide A from the N-terminal disulphide knot, fragment 1-44 and fragment 1-51 of the A alpha chain was inhibited by thrombomodulin. The average value for the inhibition constant obtained with these substrates was 0.83 +/- 0.09 nM, which was in good agreement with the values obtained previously for the inhibition of thrombin by thrombomodulin with native fibrinogen as the substrate [Hofsteenge, J., Taguchi, H. & Stone, S. R. (1986) Biochem. J. 237, 243-251]. In contrast, the cleavage of fibrinopeptide A from fragment 1-23 and fragment 1-29 of the A alpha chain was not affected by thrombomodulin. Although the cleavage of the B beta chain in the intact fibrinogen molecule was inhibited by thrombomodulin [Hofsteenge, J., Taguchi, H. & Stone, S. R. (1986) Biochem. J. 237, 243-251], the release of fibrinopeptide B from the N-terminal disulphide knot and the N-terminal 118-residue fragment of the B beta chain was not inhibited by thrombomodulin. In addition, we determined the second-order rate constants of cleavage of these substrates using human thrombin. Fragments of the A alpha chain whose cleavage was inhibited by thrombomodulin were found to have values for kcat/Km that were within one order of magnitude of that for the native fibrinogen, whereas those for A alpha chain fragments whose cleavage was not inhibited by thrombomodulin were found to be more than two orders of magnitudes lower. From these results we conclude that only a relatively small portion of the A alpha chain of the fibrinogen molecule is responsible for the specific binding to thrombin that is affected by thrombomodulin. Moreover, residues 30-44 of the A alpha chain play an important role in this thrombin-fibrinogen interaction.  相似文献   

3.
Steady-state kinetic parameters were compared for the action of alpha- and gamma-thrombin on the physiologically important thrombin substrates fibrinogen and factor XIII at 37 degrees C, pH 7.4, and 0.14 M NaCl. gamma-Thrombin, an alpha-thrombin derivative proteolytically cleaved at R-B73 and K-B154, was observed to catalyze the release of fibrinopeptide A (FPA) from fibrinogen with a specificity constant (kcat/Km) of 5 X 10(3) M-1 s-1. This value was approximately 2400-fold lower than the specificity constant for the corresponding alpha-thrombin-catalyzed reaction. The low specificity constant was attributed to an increase in Km and a decrease in kcat for gamma-thrombin-catalyzed release of FPA from fibrinogen. Conversion of alpha-thrombin to gamma-thrombin also resulted in an approximately 800-fold reduction in the specificity constant for thrombin-catalyzed release of fibrinopeptide B (FPB) from fibrin I, as well as a loss in discriminatory power. Whereas alpha-thrombin preferentially released FPA from intact fibrinogen, gamma-thrombin released FPA and FPB from intact fibrinogen at similar rates. In contrast to the large difference in specificity constants observed for alpha- and gamma-thrombin catalysis with fibrin(ogen) as substrate, the specificity constant (2.6 X 10(4) M-1 s-1) observed for gamma-thrombin-catalyzed release of activation peptide from factor XIII was only 5-fold lower than the corresponding value for the alpha-thrombin-catalyzed reaction. Additionally, the promotion of factor XIII activation by fibrin characteristic of the alpha-thrombin-catalyzed reaction did not occur in the gamma-thrombin-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen   总被引:10,自引:0,他引:10  
T J Janus  S D Lewis  L Lorand  J A Shafer 《Biochemistry》1983,22(26):6269-6272
High-performance liquid chromatography was used to analyze the kinetics of the thrombin-catalyzed release of the activation peptide from the factor XIII zymogen (fibrin-stabilizing factor). The specificity constant (kcat/Km) for this reaction, measured at factor XIII concentrations much below Km, was (0.13-0.16) X 10(6) M-1 s-1 at pH 7.4, mu = 0.15, and 37 degrees C. Separate estimates, obtained from the dependence of the initial rates of release of the activation peptide on the concentration of factor XIII, gave values of 10 (+/- 3) s-1 for kcat and 84 (+/- 30) microM for Km, in terms of ab protomers of the zymogen. The thrombin-mediated release of the activation peptide was dramatically enhanced in the presence of fibrinogen. Furthermore, the time course of release, in relation to that of fibrinopeptide A, suggested that some des-A-fibrinogen species (e.g., alpha 2B beta 2 gamma 2) may be the true activator for promoting the cleavage of the Arg-36 peptide bonds in the a subunits of factor XIII. This observation suggests that generation of factor XIIIa and its substrate (fibrin) is coordinated so that thrombin-mediated zymogen activation proceeds efficiently only after the process of clotting has been initiated by the removal of fibrinopeptide A from fibrinogen.  相似文献   

5.
Mihalyi E 《Biophysical chemistry》2004,112(2-3):131-140
Calcium binding curves of human and bovine fibrinogen were obtained by using a calcium sensitive electrode. The two were identical and showed 2 high, 2-3 medium and more than 15 low affinity sites. Differential scanning calorimetry at neutral pH demonstrated the presence of the D and E domains of fibrinogen; however, at pH 3.5 the D-domain was split into two. The presence of the subdomains was demonstrated also by digestion by pepsin at this pH. Combination of digestion of fibrinogen and of its fragments with different enzymes and temperatures identified up to 12 subdomains in the original molecule. Clotting of fibrinogen by thrombin at pH 7.0 was investigated also by differential scanning calorimetry. In the absence of Ca2+ clotting elicited a 40% increase in the enthalpy of thermal denaturation of the D domain of fibrinogen, but the position of the peak increased only by 0.4 degrees C. However, with clotting in the presence of 10(-3) M calcium the former increased by 70-75% and the latter by 11.0 degrees C, while these parameters of the E-domain remained unchanged. Changes of bound calcium during clotting were also measured with the calcium sensitive electrode. These had to be corrected, because the drop in free calcium was partly compensated by release of some calcium that was already bound to fibrinogen. Log of the half time of calcium uptake plotted against log thrombin concentration indicated a first order process with respect to thrombin concentration, moreover, the rate determined corresponded to that of the conformation change measured by calorimetry. The calcium uptake was correlated with release of the fibrinopeptides. Release of fibrinopeptide B follows parallel to binding of calcium and that of fibrinopeptide A is about fourfold faster. Polymerization and formation of thick bundles of fibrin is connected with release of fibrinopeptide A. Clotting with Ancrod, an enzyme that releases only fibrinopeptide A, showed only minimal binding of calcium. The polymerization inhibiting tetrapeptide Gly-Pro-Arg-Pro also depressed binding of calcium. These data suggest that a calcium-binding site must be in the proximity of the site of release of fibrinopeptide B and of a polymerization site.  相似文献   

6.
E Mihalyi 《Biochemistry》1988,27(3):967-976
Polymerization of bovine fibrinogen acted upon by thrombin is accompanied by binding of Ca2+ and a concomitant decrease of the free Ca2+ concentration. The latter can be recorded by a Ca2+-selective electrode as a shift in the electrode potential. The shift shows marked dependence on the initial free Ca2+ concentration, being maximal at about 10(-4.1) M and decreasing sharply on either side of this. Thus, the effect is limited to the 10(-3)-10(-5) M free Ca2+ concentration range. From the initial and the final value of the electrode potential during a clotting experiment, the amount of Ca2+ bound to fibrinogen and fibrin, respectively, can be calculated. The difference between the two, plotted against free Ca2+ concentration, gives a bell-shaped curve. This indicates that the reason for the Ca2+ binding is a shift of the pK of some groups from a lower to higher value. The recordings can be used for evaluation of the kinetics of the Ca2+ uptake. However, they have to be corrected for the effect of the continuous shift in the free Ca2+ concentration during the experiment. The reaction does not follow simple kinetics, showing a lag period. Therefore, rates were estimated from inverse half-reaction times. Half-times of the corrected curves show that the reaction is first order with respect to thrombin. Moreover, the rate of Ca2+ uptake is identical with that of the conformational change seen in differential scanning calorimetry [Donovan, J.W., & Mihalyi, E. '1985) Biochemistry 24, 3434]. The inverse rate and the final corrected Ca2+ uptake increase linearly with the initial fibrinogen concentration. Concomitant estimates of fibrinopeptide A and B release showed that the Ca2+ uptake runs parallel to the release of fibrinopeptide B. Fibrinopeptide A was released largely during the lag period of the Ca2+ uptake. In agreement with this, clotting with Ancrod, an enzyme that liberates only fibrinopeptide A, was not accompanied by binding of Ca2+. Thus, polymerization is not sufficient for the Ca2+ uptake to occur; liberation of fibrinopeptide B seems to be obligatory. Further support for this was obtained with experiments with the polymerization inhibitor Gly-Pro-Arg-Pro. The tetrapeptide inhibits polymerization and also, proportional to this, release of fibrinopeptide B [Hurlet-Jensen, A., Cummins, H.Z., Nossel, H.L., & Liu, C.Y. (1982) Thromb. Res. 27, 419; Lewis, S.D., Shields, P.P., & Shafer, J.A. (1985) J. Biol. Chem. 260, 10192]. Calcium uptake was also depressed by the tetrapeptide in a way similar to its effect upon fibrinopeptide B release.  相似文献   

7.
R A Henriksen  K G Mann 《Biochemistry》1988,27(26):9160-9165
A congenitally dysfunctional form of prothrombin, prothrombin Quick, was isolated from the plasma of an individual with less than 2% of normal prothrombin activity. Following activation of prothrombin Quick, two dysfunctional thrombins, thrombin Quick I and thrombin Quick II, were isolated. Functional characterization of thrombin Quick I indicated an increase in KM and a decrease in kcat, relative to thrombin, for release of fibrinopeptide A. Comparison of kcat/KM for thrombin Quick I to the value obtained for thrombin yielded a relative catalytic efficiency of 0.012 for thrombin Quick I [Henriksen, R. A., & Owen, W. G. (1987) J. Biol. Chem. 262, 4664-4669]. Lysyl endopeptidase digestor of reduced and S-carboxymethylated thrombin and thrombin Quick I has resulted in the identification of an altered peptide in this dysthrombin. Edman degradation of the isolated peptide has shown that the altered residue in this protein is Arg-382 which is replaced by Cys. This could result from a point mutation in the Arg codon, CGC, to yield TGC. Together, these results indicate that Arg-382 is a critical residue in determining the specificity of thrombin toward fibrinogen. Similar relative activities for thrombin Quick I in stimulating platelet aggregation, in the release of prostacyclin from human umbilical vein endothelium, and in the release of fibrinopeptide A suggest that these activities of thrombin share the same specificity determinants.  相似文献   

8.
The conformations of the B beta chain of the intact fibrinogen molecule and of various fragments of the B beta chain of fibrinogen that contain the region that is hydrolyzed by thrombin have been compared by an immunochemical method [Sachs, D. H., Schechter, A. N., Eastlake, A., & Anfinsen, C. B. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 3790]. Anti-fibrinogen antibodies were induced in rabbits by immunization with native bovine fibrinogen. An antibody population specific for the native antigenic determinant within the B beta fragment 20-28 was isolated by immunoadsorption. This preparation was to determine the value of Kconf, the equilibrium constant for the interconversion of the nonnative and native conformations of this determinant. Values of Kconf were measured for this determinant within native fibrinogen, the disulfide knot (DSK), CNBrB beta, B beta fragment 16-28, B beta fragment 20-28, and fibrinopeptide B (FpB). 125I-Labeled fibrinogen (125I-F) was used in the determination of Kconf by measuring the competition between 125I-F and the fibrinogen derivatives under study for binding to the purified antibody. For the antigenic region in F, the DSK, and CNBrB beta, the values of Kconf at 4 degrees C were infinity, (5.9 +/- 3.5) X 10(-3), and (1.2 +/- 0.7) X 10(-3), respectively. The values of Kconf for B beta fragment 16-28, B beta fragment 20-28, and FpB at 4 degrees C were less than (6.0 +/- 3.9) X 10(-7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fibrinogen, purified from a recently identified case of dysfibrinogenaemia, fibrinogen Sydney I, was shown by thrombin digestion, high-performance liquid chromatography (HPLC) and amino acid analysis to be a heterozygous case of an A alpha Arg-16----His substitution. Kinetic studies have been carried out on the thrombin-induced release of fibrinopeptide A (FPA), fibrinopeptide B (FPB) and the variant peptide [His16]FPA. When thrombin was added to fibrinogen Sydney I at a concentration of 0.2 U/ml release of FPA was rapid and there was a 79-fold reduced rate of release of [His16]FPA, but the rate of release of FPB was not appreciably reduced. In contrast, at lower thrombin concentrations the rate of FPB release was reduced in proportion to the rate of total FPA release, supporting the view that release of fibrinopeptides is a sequential process. The second-order kinetic constant kcat/Km for hydrolysis of the abnormal A alpha chain by thrombin was calculated from Lineweaver-Burk plots to be 16-30-fold less than that for the normal A alpha chain. Molecular modelling studies, using a refined model of the trypsin-pancreatic-trypsin-inhibitor complex have been used to suggest how the histidine at the P1 site can be accommodated within the enzyme hydrophobic active-site pocket.  相似文献   

10.
Employing high-performance liquid chromatography (HPLC), we have isolated and quantified the peptides that are released from the NH2-terminus of human fibrinogen B beta-chains by plasmin proteolysis. The peptides were identified by amino acid composition and by a radioimmunoassay developed for fibrinopeptide B detection. B beta 1-42 was the earliest fragment released during limited plasmin proteolysis. The level of this peptide reached a maximum and then began to decline during the course of the digestion. In addition, increasing levels of B beta 1-21 and of FPB followed the production of B beta 1-42. Using purified B beta 1-42 as a substrate, preferential cleavage was shown to occur at the 21-22 bond, with a minor cleavage at the 14-15 bond. Exhaustive digestion yielded two major components which were separated by HPLC: B beta 1-14 (FPB) and beta 22-42. The rate of cleavage at the 14-15 bond, which is the customary site of thrombin proteolysis, was not affected by the addition of hirudin indicating that this was not the result of trace contamination with thrombin. We have also examined plasmin proteolysis at the NH2-terminal region of the B beta-chains of a variety of fibrinogen derivatives and have found similar patterns of B beta 1-42 release. Using HPLC data, we have estimated the Km for plasmic cleavage of the beta 21-22 bond to be 1.8 X 10(-5) M and of the beta 14-15 bond to be 2.8 X 10(-5) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During cleavage of fibrinogen by thrombin, fibrinopeptide A (FpA) release precedes fibrinopeptide B (FpB) release. To examine the basis for this ordered release, we synthesized A'beta fibrinogen, replacing FpB with a fibrinopeptide A-like peptide, FpA' (G14V). Analyses of fibrinopeptide release from A'beta fibrinogen showed that FpA release and FpA' release were similar; the release of either peptide followed simple first-order kinetics. Specificity constants for FpA and FpA' were similar, demonstrating that these peptides are equally competitive substrates for thrombin. In the presence of Gly-Pro-Arg-Pro, an inhibitor of fibrin polymerization, the rate of FpB release from normal fibrinogen was reduced 3-fold, consistent with previous data; in contrast, the rate of FpA' release from A'beta fibrinogen was unaffected. Thus, with A'beta fibrinogen, fibrinopeptide release from the beta chain is similar to fibrinopeptide release from the alpha chain. We conclude that the ordered release of fibrinopeptides is dictated by the specificity of thrombin for its substrates. We analyzed polymerization, following changes in turbidity, and found that polymerization of A'beta fibrinogen was similar to that of normal fibrinogen. We analyzed clot structure by scanning electron microscopy and found that clots from A'beta fibrinogen were similar to clots from normal fibrinogen. We conclude that premature release of the fibrinopeptide from the N terminus of the beta chain does not affect polymerization of fibrinogen.  相似文献   

12.
The time dependence of the release of fibrinopeptides from fibrinogen was studied as a function of the concentration of fibrinogen, thrombin, and Gly-Pro-Arg-Pro, an inhibitor of fibrin polymerization. The release of fibrinopeptides during fibrin assembly was shown to be a highly ordered process. Rate constants for individual steps in the formation of fibrin were evaluated at pH 7.4, 37 degrees C, gamma/2 = 0.15. The initial event, thrombin-catalyzed proteolysis at Arg-A alpha 16 to release fibrinopeptide A (kcat/Km = 1.09 X 10(7) M-1s-1) was followed by association of the resulting fibrin I monomers. Association of fibrin I was found to be a reversible process with rate constants of 1 X 10(6) M-1s-1 and 0.064 s-1 for association and dissociation, respectively. Assuming random polymerization of fibrin I monomer, the equilibrium constant for fibrin I association (1.56 X 10(7) M-1) indicates that greater than 80% of the fibrin I protofibrils should contain more than 10 monomeric units at 37 degrees C, pH 7.4, when the fibrin I concentration is 1.0 mg/ml. Association of fibrin I monomers was shown to result in a 6.5-fold increase in the susceptibility of Arg-B beta 14 to thrombin-mediated proteolysis. The 6.5-fold increase in the observed specificity constant from 6.5 X 10(5) M-1s-1 to 4.2 X 10(6) M-1s-1 upon association of fibrin I monomers and the rate constant for fibrin association indicates that most of the fibrinopeptide B is released after association of fibrin I monomers. The interaction between a pair of polymerization sites in fibrin I dimer was found to be weaker than the interaction of fibrin I with Gly-Pro-Arg-Pro and weaker than the interaction of fibrin I with fibrinogen.  相似文献   

13.
J W Donovan  E Mihalyi 《Biochemistry》1985,24(14):3434-3443
The denaturation temperature Td and the enthalpy of thermal denaturation delta Hd of the D nodules of fibrinogen increase 12-13 degrees C and 40%, respectively, when fibrinogen is clotted by thrombin in the presence of 10(-3) M calcium ion. The rate of change of Td and delta Hd is first order in thrombin concentration. In the absence of calcium, little change in Td is observed, but the increase in delta Hd still occurs. The shift in Td as a function of logarithm of calcium concentration is sigmoid, with a half-point at 2.5 X 10(-5) M calcium for human and 6.0 X 10(-5) M calcium for bovine fibrinogens, suggesting that the shift is due to binding of calcium at the high-affinity binding sites of fibrin. The Td of the D nodule of native fibrinogen also increases, but not as much, on addition of calcium. This increase in Td is also sigmoid with log calcium, with a half-point of 1.6 X 10(-3) M calcium for human and 3.2 X 10(-3) M calcium for bovine fibrinogens, and appears to be due to binding of calcium to the low-affinity binding sites of fibrinogen. At calcium concentrations greater than 10(-4) M, traces of factor XIII in the bovine fibrinogen preparation become activated and cause cross-linking of the fibrin gel. But the changes in Td and delta Hd still occur when factor XIIIa is inactivated by iodoacetamide, and the rate of the changes is not altered by addition of large amounts of factor XIIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The N-terminal portions of the Aα and Bβ chains of bovine fibrinogen (CNBr Aα and Bβ), each of which contains an ArgGly bond that is hydrolyzed by thrombin, have been isolated by cyanogen bromide cleavage of fibrinogen and column chromatography of the resulting material. These peptides were digested with thrombin, releasing fibrinopeptide A and GlyProArg from CNBr Aα, and fibrinopeptide B from CNBr Bβ. The C-terminal peptides produced by digestion with thrombin (CNBr α and CNBr β) were purified, and the amino acid sequences of portions of these peptides (30 residues from the N-terminus of CNBr α and 32 residues from the N-terminus of CNBr β) were determined with an automatic sequenator using the Edman degradation.  相似文献   

15.
Family members heterozygous for the congenitally abnormal fibrinogen designated fibrinogen Manchester, A alpha 16Arg----His, have previously been shown by h.p.l.c. and amino acid analysis to release a variant fibrinopeptide, [His16]fibrinopeptide A, from plasma fibrinogen after the addition of thrombin. The present study was designed to determine if the same abnormal phenotype was also present in the intraplatelet fibrinogen pool. Fresh platelets were washed in buffers containing EDTA until it could be shown that all washable plasma fibrinogen was removed. Normal platelets were then lysed by freezing and thawing to release their intracellular proteins, which were then treated with thrombin. The fibrinopeptides, cleaved from the intraplatelet fibrinogen, could be detected by an optimized h.p.l.c. technique. Quantification of the intraplatelet fibrinogen gave a result (means +/- S.D., n = 5) of 110 +/- 30 and 90 +/- 30 micrograms/10(9) platelets, when determined by h.p.l.c. quantification of fibrinopeptide B content and fibrinogen fragment E radioimmunoassay respectively. Examination of fibrinopeptides released from the platelet fibrinogen from the family with fibrinogen Manchester with the same techniques showed elution peaks in the same positions as both [His16]fibrinopeptide A and normal fibrinopeptide A. The identity of these peaks was further substantiated by analysis of the h.p.l.c. peaks by using specific radioimmunoassay to fibrinopeptide A. Our results therefore demonstrate that platelet fibrinogen expresses the heterozygous A alpha 16His phenotype. This supports the view that the A alpha chains of platelet and plasma fibrinogen are produced from a single genetic locus.  相似文献   

16.
The dysthrombin, Thrombin Quick, is chromatographically separable into two components designated Thrombin Quick I and Thrombin Quick II. Thrombin Quick II lacks observable catalytic activity toward thrombin substrates. The steady-state kinetics of hydrolysis of benzoylarginine ethyl ester and Tos-Gly-Pro-Arg-p-nitroanilide by Thrombin Quick I are equivalent to those of thrombin. These results, in addition to binding studies with the active site titrant N2-(5-dimethylaminonaphthalene-1-sulfonyl)arginine N-(3-ethyl-1,5-pentanediyl)amide, indicate that binding interactions at the catalytic site of Thrombin Quick I are unaltered. Thrombin Quick I is inhibited by anti-thrombin III at the same rate as thrombin. Steady-state kinetic parameters for the release of fibrinopeptide A indicate defects in both kcat and Km for Thrombin Quick I with kcat/Km equal to 0.012 of the value for thrombin, corresponding to the relative fibrinogen clotting activity of 0.013. The results are interpreted as indicating a defect in Thrombin Quick I at a binding site, external to the catalytic site, which is essential for determining specificity toward fibrinogen. The defect in kcat may result secondarily from small perturbations in the steric relationship of the catalytic triad residues. The rate of hydrolysis by Thrombin Quick I of the protein substrates bovine prothrombin and bovine protein C (in the absence of cofactors) is about one-third of that observed for thrombin, indicating that hydrolysis of these substrates by thrombin involves different specificity determinants than does the hydrolysis of fibrinogen.  相似文献   

17.
1. Improved methods for the purification of lamprey thrombin and fibrinogen are presented. 2. Lamprey thrombin releases two fibrinopeptides from lamprey fibrinogen during the transformation into fibrin. Bovine thrombin releases only one of these, a peptide referred to as fibrinopeptide B. The differences in the by-products of fibrin formation are reflected in the different N-terminal amino acid compositions of the two types of fibrin. 3. The fibrinopeptide that is not removed from the lamprey fibrinogen by bovine thrombin can subsequently be released by treatment of that fibrin with lamprey thrombin. 4. Under the conditions used, lamprey thrombin releases both fibrinopeptides at about the same rate. 5. The differences in interaction among these pairs of related proteins are extreme manifestations of the phenomenon loosely referred to as `species specificity'.  相似文献   

18.
We used fluorescence correlation spectroscopy (FCS) to study the activation of fibrinogen by thrombin and the subsequent aggregation of fibrin monomers into fibrin polymers at a very low and at physiological fibrinogen concentrations. In the labeling procedure used the fibrinogen was randomly labeled and the label was bound to the fibrinopeptide A and/or to the part of fibrinogen which after activation takes part in fibrin formation. We measured a diffusion coefficient for fibrinogen of 2.48 x 10(-7) +/- 0.10 x 10(-7) cm2/s. After activation with thrombin both fibrinopeptide A and fibrin polymerization products could be demonstrated. From our findings we suggest a model for the formation of a three-dimensional network as two parallel processes, elongation and branching and that fibrin oligomers are not only intermediates in the polymerization process but also are substrates for branching.  相似文献   

19.
Localization of a fibrin polymerization site   总被引:6,自引:0,他引:6  
The formation of a fibrin clot is initiated after the proteolytic cleavage of fibrinogen by thrombin. The enzyme removes fibrinopeptides A and B and generates fibrin monomer which spontaneously polymerizes. Polymerization appears to occur though the interaction of complementary binding sites on the NH2-terminal and COOH-terminal (Fragment D) regions of the molecule. A peptide has been isolated from the gamma chain remnant of fibrinogen Fragment D1 which has the ability to bind to the NH2-terminal region of fibrinogen as well as to inhibit fibrin monomer polymerization. The peptide reduces the maximum rate and extent of the polymerization of thrombin or batroxobin fibrin monomer and increases the lag time. The D1 peptide does not interact with disulfide knot, fibrinogen, or Fragment D1, but it binds to thrombin-treated disulfide knot with a Kd of 1.45 X 10(-6) M at approximately two binding sites per molecule of disulfide knot. Fibrin monomer formed either by thrombin or batroxobin binds approximately two molecules of D1 peptide per molecule of fibrin monomer, indicating that the complementary site is revealed by the loss of fibrinopeptide A. The NH2-terminal sequence (Thr-Arg-Trp) and COOH-terminal sequence (Ala-Gly-Asp-Val) of the D1 peptide were determined. Therefore the gamma 373-410 region of fibrinogen contains a polymerization site which is complementary to the thrombin-activated site on the NH2-terminal region of fibrinogen.  相似文献   

20.
Out of 29 disulfide bonds in human fibrinogen, 7 were cleaved during limited reduction under nondenaturing conditions in calcium-free buffer: 2 A alpha 442Cys-A alpha 472Cys and 2 gamma 326Cys-gamma 339Cys intrachain disulfide bonds in the carboxy-terminal ends of the A alpha- and gamma-chains and the symmetrical disulfide bonds at gamma 8Cys, gamma 9Cys, and A alpha 28Cys. We studied the loss of thrombin clottability that followed limited reduction and the increase in the susceptibility of the fibrinogen A alpha 19-A alpha 20 bond to hydrolysis by thrombin. Using differential scanning calorimetry, we show that the extent of unfolding and denaturation of specific domains following limited reduction is small. Heat absorption peaks corresponding to the melting of the major regions of compact structure give high calorimetric enthalpies, as in untreated nonreduced fibrinogen, indicating that substantial regions of native structure are still present in partially reduced fibrinogen. Thrombin releases fibrinopeptide A at an identical rate as in nonreduced fibrinogen while fibrinopeptide B release is slower. Sedimentation velocity studies show that thrombin treatment leads to complex formation; however, gelation does not occur. Amino-terminal analysis indicates that the second thrombin cleavage in the A alpha-chain at A alpha 19-A alpha 20 takes place only after fibrinopeptide A release. Thus, the loss of clottability appears to result from perturbation of carboxy-terminal polymerization sites, probably a consequence of gamma 326Cys-gamma 339Cys intrachain disulfide bond cleavage. The thrombin-treated partially reduced fibrinogen remains soluble in buffered saline and fully expresses at least one epitope, B beta 15-21, unique to fibrin. Furthermore, this nonclottable form accelerates the tissue plasminogen activator dependent conversion of plasminogen to plasmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号