首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of alpha1-acid glycoprotein on the formation of fibrous long spacing fibers of collagen has been investigated. It was observed that addition of the glycoprotein to dialyzed collagen solutions caused a significant decrease in the intensity of the circular dichroic spectrum of collagen. This phenomenon, which displays an optimum with respect to glycoprotein, is consistent with previous observations of fibrous long spacing fiber formation. Changes in viscosity of collagen initially dissolved in acetic acid were monitored during dialysis. It was found that a significant increase in viscosity must occur during dialysis of collagen before fibrous long spacing formation could take place. This increase in viscosity can be related directly to removal of acetic acid from the collagen solution. Removal of all sialyl residues from the alpha1-acid glycoprotein with neuraminidase prevents fibrous long spacing formation while removal of up to 35% of the sialyl residues has no effect on the interaction of glycoprotein with collagen. Amino acid composition and radioactivity studies suggest that 45-55% of the insoluble fibrous long spacing fibers is glycoprotein. In contrast to native collagen fibers, reduced fibrous long spacing fibers do not contain histidinohydroxymerodesmosine or hydroxylysinonorleucine. Instead, they contain significant quantities of allysine aldol and epsilon-hydroxynorleucine.  相似文献   

2.
BACKGROUND: Solitary fibrous tumor is a rare spindle cell tumor and has been forced at a variety of sites. To the best of our knowledge, only two cases of solitary fibrous tumor arising in the spinal cord have been reported; no cytologic findings were documented. CASE: A 62-year-old male presented with a spinal cord tumor. A scrape smear of the resected tumor revealed naked, spindle-shaped nuclei. Some nuclei were twisted or had long spindles. In the background, abundant, thin and thick collagen fibers were present. Immunohistochemically, the spindle cells were positive for CD34 and negative for S-100 protein and alpha-smooth muscle actin. Histologic diagnosis of the tumor was benign solitary fibrous tumor. CONCLUSION: Our case indicates that solitary fibrous tumor can occur in the spinal cord and should be differentiated from other benign spindle cell tumors, such as meningioma and schwannoma. The key cytologic features of solitary fibrous tumor may be the presence of abundant thin and thick collagen fibers in scrape specimens.  相似文献   

3.
The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.  相似文献   

4.
Structural components of the organic bone matrix were located by immunohistochemical techniques in fresh-frozen sections of normal and dysplastic bone. Fine and coarse birefringent fibers were identified as separate and distinctive features in the extracellular matrix by antibodies raised against human collagen Type III. The glycoprotein tenascin was located on a proportion of the fibers in a characteristic beaded pattern, which was absent in dysplastic bone. The fibers originated in the periosteum or in the fibrous stroma of the marrow cavity and were oriented with regard to both the spatial and the lamellar organization of the bone. The disposition and composition of the fibers suggests that they form a preliminary framework on which intramembranous bone modeling proceeds, and that the specific location of tenascin on the fibers in normal developing membrane bone may be important in determining the alignment of the bone tissue. Epitopes recognized by the collagen Type I and fibronectin antibodies were demonstrated throughout the mineralized matrix, but their incorporation into the collagen "Type III" fibers was evident only outside the mineralized matrix.  相似文献   

5.
By means of scanning and transmissive electron microscopy, the construction of the fibrous framework of the human skeletal muscles, fasciae and tendons has been investigated and its morphofunctional analysis has been performed. The fibrous framework of the endomysium is presented as a complexly organized system of anastomosing fibers of the connective tissue, forming a net-like construction. The fibrous structures of the framework are united into a whole construction by connecting fibers and fibrils. Different types of structural interconnection of collagenous fibers with sarcolemma are revealed. The structure of the fibrous framework both in different muscles and within one muscle has certain peculiarities. The main constructive element of the fascial fibrous framework make large anastomosing collagenous fibers, their architectonics is stabilized by connective fibers and fibrils. The construction of the tendinous fibrous framework is characterized by a pronounced anisotropia of the largest collagenous fibers and a developed network of connective structures both on the surface and inside the collagenous fibers. Structural mechanisms, interconnecting muscles and tendons, are demonstrated. Presence of anastomoses between the fibrils in the composition of the collagenous fibers in the fascia and Achilles tendon are stated. Together with the peculiarities existing, the general principle of the structural organization of the fibrous framework of the muscle system is the net-like constructure dependent on presence of anastomoses and elements of the connective system between the fibrous structures. Depending on the organ's function, the construction of the network acquires certain specific morphological forms.  相似文献   

6.
Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.  相似文献   

7.
The anuran epiphyseal cartilage shows a lateral expansion that covers the external surface of the bone, besides other features that distinguish it from the corresponding avian and mammalian structures. The fibrous structure that attaches the lateral cartilage to the bone was characterized in this work. It was designated osteochondral ligament (OCL) and presented two main areas. There was an inner area that was closer to the periosteal bone and contained a layer of osteoblasts and elongated cells aligned to and interspersed with thin collagen fibers. The thin processes of the cells in this area showed strong alkaline phosphatase activity. The outer area, which was closer to the cartilage, was rich in blood vessels and contained a few cells amongst thick collagen fibers. TRITC-phaloidin staining showed the cells of the inner area to be rich in F-actin, and were observed to form a net around the cell nucleus and to fill the cell processes which extended between the collagen fibers. Cells of the outer area were poor in actin cytoskeleton, while those associated with the blood vessels showed intense staining. Tubulin-staining was weak, regardless of the OCL region. The main fibers of the extracellular matrix in the OCL extended obliquely upwards from the cartilage to the bone. The collagen fibers inserted into the bone matrix as Sharpey's fibers and became progressively thicker as they made their way through the outer area to the cartilage. Immunocytochemistry showed the presence of type I and type III collagen. Microfibrils were found around the cells and amongst the collagen fibrils. These microfibrils were composed of either type VI collagen or fibrilin, as shown by immunocytochemistry. The results presented in this paper show that the osteochondral ligament of Rana catesbeiana is a complex and specialized fibrous attachment which guarantees a strong and flexible anchorage of the lateral articular cartilage to the periosteal bone shaft, besides playing a role in bone growth.  相似文献   

8.
Effect of various duration of hypokinesia on structural-metabolic characteristics of the lumbar vertebral segment has been studied in Wistar rats. Hypokinesia results in certain morphological changes of the spongy bone and tissues of the intervertebral disk, demonstrating as delayed processes of ossification, disturbed course of organization into bundles of collagenous fibers of the fibrous ring, widening of the nucleus pulposus zone. Polarization-optical investigations reveal some disturbances in the macro-molecular organization of collagen, expressed as decreasing degree of its refraction and as redistribution of glycosaminoglycans towards increasing sulfated keratan sulfates.  相似文献   

9.
Vidal BC  Mello ML 《Biopolymers》2005,78(3):121-128
The optical anisotropies (linear dichroism or LD and birefringence) of crystalline aggregates of the sulfonic azo-dye Ponceau SS and of dye complexed with chicken tendon collagen fibers were investigated in order to assess their polarizing properties and similarity to liquid crystals. In some experiments, the staining was preceded by treatment with picric acid. Crystalline fibrous aggregates of the dye had a negative LD, and their electronic transitions were oriented perpendicular to the filamentary structures. The binding of Ponceau SS molecules to the collagen fibers altered the LD signal, with variations in the fiber orientation affecting the resulting dichroic ratios. The long axis of the rod-like dye molecule was assumed to be bound in register, parallel to the collagen fiber. Picric acid did not affect the oriented binding of the azo dye to collagen fibers. There were differences in the optical anisotropy of Ponceau SS-stained tendons from 21-day-old and 41-day-old chickens, indicating that Ponceau SS was able to distinguish between different ordered states of macromolecular aggregation in chicken tendon collagen fibers. In the presence of dichroic rod-like azo-dye molecules such as Ponceau SS, collagen also formed structures with a much higher degree of orientation. The presence of LD in the Ponceau SS-collagen complex even in unpolarized light indicated that this complex can act as a polarizer.  相似文献   

10.
The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that these errors are not due to inaccuracies in measuring the collagen fiber organization. More likely, additional strain energy terms representing fiber-fiber interactions are necessary to provide a closer approximation of the transverse stresses. Nevertheless, this approach demonstrated that the longitudinal tensile mechanics of the supraspinatus tendon are primarily dependent on the moduli, crimp, and angular distribution of its collagen fibers. These results add to the existing knowledge of structure-function relationships in fibrous musculoskeletal tissue, which is valuable for understanding the etiology of degenerative disease, developing effective tissue engineering design strategies, and predicting outcomes of tissue repair.  相似文献   

11.
Arteries of mice were studied by a silver impregnation technique, by the Picrosirius-polarization method and by transmission electron microscopy. The histochemical results obtained coincided with the electron-microscopic observations in showing the presence of two distinct collagen populations, segregated into different compartments of each artery. The fibrous component of the tunica media was comprised of reticulin fibers, which displayed a distinct argyrophilia when studied by means of the silver impregnation technique, and showed up as thin, weakly birefringent, greenish fibers when examined with the aid of the Picrosirius-polarization method. In addition, the electron-microscopic studies disclosed the presence of thin collagen fibrils in the tunica media, contrasting with the thicker fibrils that could be localized ultrastructurally to the tunica adventitia where nonargyrophil, coarse collagen fibers had been characterized by the histochemical methods used. In this respect, collagen distribution in arteries of mice is very similar to the pattern that was consistently observed in the other species studied, which argues in favor of the existence of a uniform structural pattern of collagen distribution that is a general phenomenon in vertebrate arteries. Experimental results comparing the traditional method and the computer-aided measurement of collagen fibril diameters showed that the system provides results equivalent to those produced by manual execution. In addition, the advantage in speed of the computer-aided method should prove useful in complicated studies where numerous structures are involved.  相似文献   

12.
During cancer cell growth many tumors exhibit various grades of desmoplasia, unorganized production of fibrous or connective tissue, composed mainly of collagen fibers and myofibroblasts. The accumulation of an extracellular matrix (ECM) surrounding tumors directly affects cancer cell proliferation, migration and spread; therefore the study of desmoplasia is of vital importance. Stromal fibroblasts surrounding tumors are activated to myofibroblasts and become the primary producers of ECM during desmoplasia. The composition, density and organization of this ECM accumulation play a major role on the influence desmoplasia has upon tumor cells. In this study, we analyzed desmoplasia in vivo in human colorectal carcinoma tissue, detecting an up-regulation of collagen I, collagen IV and collagen V in human colorectal cancer desmoplastic reaction. These components were then analyzed in vitro co-cultivating colorectal cancer cells (Caco-2 and HCT116) and fibroblasts utilizing various co-culture techniques. Our findings demonstrate that direct cell-cell contact between fibroblasts and colorectal cancer cells evokes an increase in ECM density, composed of unorganized collagens (I, III, IV and V) and proteoglycans (biglycan, fibromodulin, perlecan and versican). The desmoplastic collagen fibers were thick, with an altered orientation, as well as deposited as bundles. This increased ECM density inhibited the migration and invasion of the colorectal tumor cells in both 2D and 3D co-culture systems. Therefore this study sheds light on a possible restricting role desmoplasia could play in colorectal cancer invasion.  相似文献   

13.
A new technique which brilliantly colors collagen fibers in a field of polarized light reveals that during mid-life the smooth muscle cells in the tunica media of the human aorta begin to disappear. The connective tissue is divided between two regions; one below the subintimal layer and the other under the adventitia. Fine collagen fibers extend upward from the former into the subintima and beyond into the intima and the overlying atheromatous plaques of the aging aorta. Thus, the source of fibrous thickening of the vessel is not confined solely to the intimal layer; at least, a portion of the total collagen content arises deep within the aortic wall.  相似文献   

14.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

15.
Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks.  相似文献   

16.
Abstract

I review here form, or textural, birefringence (ΔF) in the context of advances in the field, as well as with regard to findings and applications in the physics of photonic devices, fibers maintaining polarization, photonic crystal fibers, and in biopolymers present in extracellular matrices and the myelin sheath. Some advantages of applying knowledge of ΔF to biological fields involving biopolymers, especially collagen fibers, are considered in more detail. Tendon and cartilage collagen fibers have been regarded as a model of dense, highly aggregated biopolymers with preferential orientations. Owing to their supramolecular organization, such materials may be used to study molecular order by using anisotropic optical properties, especially ΔF. Differences between collagen type I- and collagen type II-rich structures, and similarities between collagen crimp and second harmonic generation images are reported. Based on data reported here, it is possible to deduce that collagen type I supramolecular organization has nonlinear optical properties and that tendon segments can conduct red laser light. With respect to nerve fibers, the detection and measurements of ΔF have allowed the myelin sheath to be considered a smectic liquid crystal.  相似文献   

17.
The aorta possesses a micro-architecture that imparts and supports a high degree of compliance and mechanical strength. Alteration of the quantity and/or arrangement of the main load-bearing components of this micro-architecture – the elastin and collagen fibers – leads to mechanical, and hence functional, changes associated with aortic disease and aging. Therefore, in the future, the ability to rigorously characterize the wall fiber micro-architecture could provide insight into the complicated mechanisms of aortic wall remodeling in aging and disease. Elastin and collagen fibers can be observed using state-of-the-art multi-photon microscopy. Image-analysis algorithms have been effective at characterizing fibrous constructs using various microscopy modalities. The objective of this study was to develop a custom MATLAB-language automated image-based analysis tool to describe multiple parameters of elastin and collagen micro-architecture in human soft fibrous tissue samples using multi-photon microscopy images. Human aortic tissue samples were used to develop the code. The tool smooths, cleans and equalizes fiber intensities in the image before segmenting the fibers into a binary image. The binary image is cleaned and thinned to a fiber skeleton representation of the image. The developed software analyzes the fiber skeleton to obtain intersections, fiber orientation, concentration, porosity, diameter distribution, segment length and tortuosity. In the future, the developed custom image-based analysis tool can be used to describe the micro-architecture of aortic wall samples in a variety of conditions. While this work targeted the aorta, the software has the potential to describe the architecture of other fibrous materials, tube-like networks and connective tissues.  相似文献   

18.
The cuticle of the nematomorpha Gordius villoti is a proteinaceous extracellular structure that covers the body during the endoparasitic life in the hemocoelic cavity of insect hosts, and of the free-living adult animals. The ultrastructure of the cuticle has a complex spatial organization with several parallel layers of large diameter fibers, interposed thinner fibrous elements and honeycomb-shaped matrix surrounding the fibers. When adult isolated cuticles were partially solubilized by several compounds, the structure revealed a strong insolubility and the main fibers were always observable. HPLC and spectrophotometric assays carried out to investigate the presence of tyrosine cross-linking, indicated such a mechanism as a key-element in the hardening process of the cuticle. Such data strongly suggest that the Gordius cuticle contains dityrosine compounds, whose formation is probably mediated by endogenous peroxidase activity.  相似文献   

19.
A nanofibrous core-sheath structured scaffold incorporated with bioactive agents is supposed to promote cell migration, proliferation, and gene expressions through the controllable and sustainable release of bioactive agents from the fibers and the preservation of bioactivity. Here we present a novel and effective emulsion electrospinning method for obtaining fluorescein isothiocyanate-dextran (FITC-dextran)/poly(lactic-co-glycolic acid) (PLGA) and type I collagen/PLGA fibrous composite scaffolds. Core-sheath structured fibers with average diameters of 665 nm for FITC-dextran/PLGA and 567 nm for collagen/PLGA were successfully fabricated. In vitro-release profile shows sustained release of encapsulated FITC-dextran from FITC-dextran/PLGA fibers for as long as 7 weeks. The osteoblastic activity of the collagen/PLGA nanofibrous scaffold was investigated employing the osteoblastic-like MC3T3-E1 cell line. The results of the lactate dehydrogenase assay suggested excellent cytocompatibility. Cell proliferation and alkaline phosphatase activity were also ameliorated on this emulsion-electrospun collagen/PLGA fibrous scaffold. All the results indicated that this composite scaffold could support the early stages of osteoblast behavior as well as the immediate/late stages. The emulsion electrospinning process has potential for application in drug-release devices and as a 3-D scaffold in bone regeneration.  相似文献   

20.
Summary Rat mesenteric arteries, perfusion fixed in relaxed or contracted conditions, were digested with acid and elastase, bleach (sodium hypochlorite), or alkali to selectively remove collagen, elastin, or cells. Scanning electron microscopy was used to study the three-dimensional organization of the remaining cells or extracellular components. Smooth muscle cells of the tunica media were elongated and circumferentially oriented. Superior mesenteric artery cells had an irregular surface with numerous projections and some ends were forked. Small mesenteric artery cells were spindle shaped with longitudinal surface ridges, and showed extensive corrugations upon contraction. Elastin was present both as laminae and as an interconnected fibrous meshwork. Collagen was arranged in an irregular network of individual fibrils and small bundles of fibrils that formed nests around the cells in both arteries. This irregular arrangement persisted, with no apparent reordering or loss of order, upon contraction. The lack of an ordered arrangement or specialized organization at the cell ends suggests mechanical coupling of the cells to elastin or collagen throughout the length of the cell, allowing for force transmission in a number of directions. The tunica media is thus a composite material consisting of cells, elastin, and collagen. The isotropic network of fibers is well suited for transmitting the shearing forces placed on it by contraction of smooth muscle cells and by pressure-induced loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号