首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The largest subunit of eukaryotic RNA polymerase II contains a carboxyl-terminal domain (CTD) which is comprised of repetitive heptapeptides with a consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We demonstrate here that the mouse CTD expressed in and purified from Escherichia coli can be phosphorylated in vitro by a p34cdc2/CDC28-containing CTD kinase from mouse ascites tumor cells. The product of this reaction, a phosphorylated form of the CTD, contains phosphoserine and phosphothreonine, but not phosphotyrosine. The same phosphoamino acid content is observed in the in vivo phosphorylated CTD from a mouse cell line. Synthetic peptides with naturally occurring non-consensus heptapeptide sequences can also be phosphorylated by CTD kinase in vitro. Phosphoamino acid analysis of these non-consensus heptapeptides together with direct sequencing of a phosphorylated heptapeptide reveals that serines (or threonines) at positions two and five are the sites phosphorylated by mouse CTD kinase. Thus, the -Ser(Thr)-Pro- motif common to p34cdc2/CDC28-containing protein kinases is the recognition site for mouse CTD kinase.  相似文献   

4.
朱文俊  毛雪玲  邱晓挺 《微生物学报》2018,58(10):1701-1710
RNA聚合酶Ⅱ最大亚基Rpb1的羧基端结构域(carboxyl-terminal repeat domain,CTD)是RNA聚合酶Ⅱ发挥转录延伸功能所必需的,对其执行精确的转录调节功能至关重要。酵母细胞周期蛋白依赖性激酶CTDK-I(carboxyl-terminal repeat domain kinase,CTDK-I)由CTK1、CTK2和CTK3组成,作用于RNA聚合酶Ⅱ羧基端结构域,动态磷酸化CTD的七肽重复序列(YSPTSPS)来调控转录和翻译。酵母中的特异性蛋白CTK3与特殊的细胞周期蛋白CTK2结合形成异二聚体,再与CTDK-I的催化亚基CTK1结合以调节其活性。CTK1作为细胞周期蛋白CDK(cyclin dependent kinase,CDK)的同源蛋白,其结构与功能的研究可拓展人们对CDK蛋白家族的认识;CTK2-CTK3复合物对CTK1调控机制的研究也可为细胞周期蛋白抑制剂的研发提供新的思路。本文简述了酵母CTDK-I的功能特点及其亚基的结构与功能以及亚基间的相互作用,并展望了CTDK-I复合物的研究前景。  相似文献   

5.
6.
7.
8.
9.
10.
Three serine kinases which phosphorylate the CTD of RNA polymerase II have been identified in Aspergillus nidulans. The kinases (KI, KII, KIII) were identified using a synthetic peptide containing four copies of the CTD consensus heptamer repeat, and differ in chromatographic behavior, and apparent molecular mass (KI approximately 60kDa; KII approximately 82kDa; KIII approximately 43 kDa). KIII utilized, in addition to peptide, histone H1 as substrate, whereas casein was not phosphorylated by any of the three kinases. The kinases appear to be unrelated to the p34cdc2 kinase, as judged by Western blot analysis and the position of serine phosphorylation of the synthetic CTD peptide. KI was highly purified and renaturation experiments have shown that it consists of a single polypeptide of 57 kDa. KI also phosphorylated RNA polymerase II associated in a preinitiation complex.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号