首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the heat shock protein 90 (Hsp90) family of molecular chaperones play important roles in allowing a select group of intracellular signaling molecules reach and maintain functionally active conformations. We have previously shown that hsp90alpha gene expression in early zebrafish embryos is restricted to a subgroup of paraxial-mesoderm derived somitic cells prior to muscle formation and that the gene is downregulated in mature trunk and tail muscle fibers. Here we have compared the expression of the hsp90alpha gene to muscle regulatory genes during development of slow and fast muscle fibers in normal embryos and in embryos carrying mutations which affect somitic muscle formation. We show that hsp90alpha is first expressed early during the development of slow somitic muscle progenitors shortly following myoD activation and at a point prior to or co-incident with the expression of other known muscle regulatory genes. Expression of hsp90alpha is also activated in the midline of flh mutants when these cells switch from a notochord to a muscle fate. Conversely, expression is not detectable in cells of the paraxial mesoderm lineage which fail to converge in spt mutants and which do not activate expression of other muscle specific marker genes. Finally, expression of hsp90alpha is downregulated in slow muscle fibers by 24 h of age but becomes detectable in the later developing fast fibers at this time. Thus, hsp90alpha is expressed in developing muscle progenitors during short temporal and spatial windows of both slow and fast fiber lineages in the zebrafish somite.  相似文献   

2.
3.
4.
Constitutive expression of Hsp27 has been demonstrated in vertebrate embryos, especially in developing skeletal and cardiac muscle. Results of several previous studies have indicated that Hsp27 could play a role in the development of these tissues. For example, inhibition of Hsp27 expression has been reported to cause defective development of mammalian myoblasts in vitro and frog embryos in vivo. In contrast, transgenic mice lacking Hsp27 develop normally. Here, we examined the distribution of Hsp27 protein in developing and adult zebrafish and effects of suppressing Hsp27 expression using phosphorodiamidate morpholino oligonucleotides (PMO) on zebrafish development. Consistent with our previous analysis of hsp27 messenger RNA expression, we detected the protein Hsp27 in cardiac, smooth, and skeletal muscle of both embryonic and adult zebrafish. However, embryos lacking detectable Hsp27 after injection of antisense hsp27 PMO exhibited comparable heart beat rates to that of control embryos and cardiac morphology was indistinguishable in the presence or absence of Hsp27. Loss of Hsp27 also had no effect on the structure of the skeletal muscle myotomes in the developing embryo. Finally, embryos injected with antisense hsp27 and scrambled control PMO displayed equal motility. We conclude that Hsp27 is dispensable for zebrafish morphogenesis but could play a role in long-term maintenance of heart and muscle tissues. Tucker and Ustyugov contributed equally to this work.  相似文献   

5.
Laser-induced gene expression in specific cells of transgenic zebrafish   总被引:16,自引:0,他引:16  
Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.  相似文献   

6.
The mechanisms that regulate sarcomere assembly during myofibril formation are poorly understood. In this study, we characterise the zebrafish sloth(u45) mutant, in which the initial steps in sarcomere assembly take place, but thick filaments are absent and filamentous I-Z-I brushes fail to align or adopt correct spacing. The mutation only affects skeletal muscle and mutant embryos show no other obvious phenotypes. Surprisingly, we find that the phenotype is due to mutation in one copy of a tandemly duplicated hsp90a gene. The mutation disrupts the chaperoning function of Hsp90a through interference with ATPase activity. Despite being located only 2 kb from hsp90a, hsp90a2 has no obvious role in sarcomere assembly. Loss of Hsp90a function leads to the downregulation of genes encoding sarcomeric proteins and upregulation of hsp90a and several other genes encoding proteins that may act with Hsp90a during sarcomere assembly. Our studies reveal a surprisingly specific developmental role for a single Hsp90 gene in a regulatory pathway controlling late steps in sarcomere assembly.  相似文献   

7.
Lens apoptosis plays a central role in cavefish eye degeneration. Heat shock proteins (hsps) can regulate apoptosis; therefore, we examined the relationship between constitutive hsp70 and hsp90 expression and lens apoptosis. The model system is Astyanax mexicanus, a teleost species consisting of an eyed surface-dwelling (surface fish) form and numerous blind cave-dwelling (cavefish) forms. Optic primordia are formed in the cavefish embryo but they subsequently undergo lens apoptosis, arrest in development and degenerate. Astyanax hsp90 and hsp70 DNAs were isolated to use as probes to compare gene expression during surface fish and cavefish development. Hsp90beta, which encodes one of two hsp90 isoforms, was not expressed in the surface fish or cavefish lens, whereas hsp70 was expressed in the lens of both forms, suggesting that neither is directly involved in lens apoptosis. In contrast, hsp90alpha, the other hsp90 isoform, was expressed in the cavefish but not the surface fish lens. Hsp90alpha expression peaked shortly before the beginning of lens apoptosis in three convergent cavefish populations, suggesting a close relationship with lens apoptosis. The absence of hsp90beta in the lens allowed us to use geldanamycin and radicicol, specific inhibitors of hsp90 chaperone function, to determine whether lens cell death requires hsp90alpha expression. Both inhibitors blocked TUNEL labeling in the cavefish lens, suggesting that hsp90alpha is required for apoptosis. In contrast to their effects on the lens, these inhibitors induced TUNEL labeling in the surface epidermis, presumably due to effects on hsp90beta function, implying that the two-hsp90 isoforms may have contrasting roles in cell survival. We conclude that hsp90alpha plays a novel role in lens apoptosis and cavefish eye degeneration.  相似文献   

8.
9.
As derivatives of the Hsp90-inhibitor and tumoricidal agent geldanamycin move into phase II clinical trials, its potential for triggering adverse effects in non-tumor cell populations requires closer examination. In this report, the effect of geldanamycin on the differentiation and survival of C2C12 myoblasts was investigated. Treatment of differentiating C2C12 myoblasts with geldanamycin blocked myogenin expression, inhibited myotubule formation, and led to the depletion of three Hsp90-dependent protein kinases, ErbB2, Fyn, and Akt, and induction of apoptosis. ErbB2 levels declined rapidly, while Fyn and Akt levels decreased at a slower rate. Geldanamycin blocked the interaction of Hsp90 and its "kinase-specific" co-chaperone Cdc37 with Fyn, indicating that Fyn is an Hsp90-dependent kinase. Pulse-chase experiments indicated that geldanamycin caused newly synthesized Akt and Fyn to be degraded rapidly, but geldanamycin had little effect on the turnover rate of mature Fyn and Akt. Curiously, total cellular Src (c-Src) protein levels and the turnover rate of newly synthesized c-Src were unaffected by geldanamycin. While, geldanamycin had no effect on the levels of the putative Hsp90 client protein MyoD expressed in C2C12 cells, geldanamycin disrupted the interaction of Cdc37 with MyoD. Thus, inhibition of Hsp90 caused C2C12 cells to become depleted of multiple signal transduction proteins whose functions are essential for myoblast differentiation, and muscle cell survival, suggesting that geldanamycin derivatives may have the prospective of adversely affecting the physiology of certain sensitive muscle cell populations in vivo.  相似文献   

10.
UBR1 and UBR2 are N-recognin ubiquitin ligases that function in the N-end rule degradation pathway. In yeast, the UBR1 homologue also functions by N-end rule independent means to promote degradation of misfolded proteins generated by treatment of cells with geldanamycin, a small molecule inhibitor of Hsp90. Based on these studies we examined the role of mammalian UBR1 and UBR2 in the degradation of protein kinase clients upon Hsp90 inhibition. Our findings show that protein kinase clients Akt and Cdk4 are still degraded in mouse Ubr1(-)/(-) cells treated with geldanamycin, but that their levels recover much more rapidly than is found in wild type cells. These findings correlate with increased induction of Hsp90 expression in the Ubr1(-)/(-) cells compared with wild type cells. We also observed a reduction of UBR1 protein levels in geldanamycin-treated mouse embryonic fibroblasts and human breast cancer cells, suggesting that UBR1 is an Hsp90 client. Further studies revealed a functional overlap between UBR1 and the quality control ubiquitin ligase, CHIP. Our findings show that UBR1 function is conserved in controlling the levels of Hsp90-dependent protein kinases upon geldanamycin treatment, and suggest that it plays a role in determining the sensitivity of cancer cells to the chemotherapeutic effects of Hsp90 inhibitors.  相似文献   

11.
Tumor suppressor p53 has been implicated in cell stress response and determines cell fate of either growth arrest or apoptosis. Heat shock proteins (Hsps) expressed under stress usually confer survival protection to the cell or interruption in the apoptotic pathways. Although Hsp90 can physically interact with p53, whether or not the hsp90 gene is influenced downstream of p53 in UV irradiation-induced apoptosis remains unclear. We have found that the level of p53 is elevated with the decline of Hsp90 in UV-irradiated cells and that malfunction of Hsp90, as inhibited by geldanamycin, enhances the p53-involved UV irradiation-induced apoptosis. In addition, the expression of the hsp90beta gene was reduced in both UV-irradiated and wild type p53-transfected cells. These results suggest a negative correlation between the trans factor p53 and a chaperone gene hsp90beta in apoptotic cells. Mutation analysis demonstrated that the p53 binding site in the first exon was indispensable for p53 regulation on the hsp90beta gene. In addition, with p53 bound at the promoter of the hsp90beta gene, mSin3a and p300 were differentially recruited in UV irradiation-treated or untreated Jurkat cells in vivo. The evidence of p53-repressed hsp90beta gene expression in UV-irradiated cells shed light on a novel pathway of Hsp90 in the survival control of the stressed cells.  相似文献   

12.
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.  相似文献   

13.
Zebrafish Hsp70 is required for embryonic lens formation   总被引:4,自引:0,他引:4       下载免费PDF全文
Heat shock proteins (Hsps) were originally identified as proteins expressed after exposure of cells to environmental stress. Several Hsps were subsequently shown to play roles as molecular chaperones in normal intracellular protein folding and targeting events and to be expressed during discrete periods in the development of several embryonic tissues. However, only recently have studies begun to address the specific developmental consequences of inhibiting Hsp expression to determine whether these molecular chaperones are required for specific developmental events. We have previously shown that the heat-inducible zebrafish hsp70 gene is expressed during a distinct temporal window of embryonic lens formation at normal growth temperatures. In addition, a 1.5-kb fragment of the zebrafish hsp70 gene promoter is sufficient to direct expression of a gfp reporter gene to the lens, suggesting that the hsp70 gene is expressed as part of the normal lens development program. Here, we used microinjection of morpholino-modified antisense oligonucleotides (MOs) to reduce Hsp70 levels during zebrafish development and to show that Hsp70 is required for normal lens formation. Hsp70-MO-injected embryos exhibited a small-eye phenotype relative to wild-type and control-injected animals, with the phenotype discernable during the second day of development. Histological and immunological analysis revealed a small, underdeveloped lens. Numerous terminal deoxynucleotidyl transferase-mediated dUTP-fluoroscein nick-end labeling (TUNEL)-positive nuclei appeared in the lens of small-eye embryos after 48 hours postfertilization (hpf), whereas they were no longer apparent in untreated embryos by this age. Lenses transplanted from hsp70-MO-injected embryos into wild-type hosts failed to recover and retained the immature morphology characteristic of the small-eye phenotype, indicating that the lens phenotype is lens autonomous. Our data suggest that the lens defect in hsp70-MO-injected embryos is predominantly at the level of postmitotic lens fiber differentiation, a result supported by the appearance of mature lens organization in these embryos by 5 days postfertilization, once morpholino degradation or dilution has occurred.  相似文献   

14.
The ansamycin antibiotic geldanamycin has frequently been used as an inhibitor of heat shock protein 90 (Hsp90), and this agent has been widely employed as a probe to examine the interactions of Hsp90 with endothelial nitric-oxide synthase. Geldanamycin contains a quinone group, which may participate in redox cycling. When geldanamycin was exposed to the flavin-containing enzyme cytochrome P-450 reductase, both semiquinone and superoxide (O(2)(*)(-)) radicals were detected using electron spin resonance. The treatment of endothelial cells with geldanamycin resulted in a dramatic increase in O(2)(*)(-) generation, which was independent of endothelial nitric-oxide synthase, because it was not inhibited by N-nitro-l-arginine methyl ester and also occurred in vascular smooth muscle cells. Diphenylene iodinium inhibited this increase in O(2)(*)(-) by 50%, suggesting that flavin-containing enzymes are involved in geldanamycin-induced O(2)(*)(-) generation. In the absence of cells, geldanamycin directly oxidized ascorbate, consumed oxygen, and produced O(2)(*)(-). Geldanamycin decreased the bioavailable nitric oxide generated by 3,4-dihydrodiazete 1,2-dioxide in smooth muscle cells by 50%, whereas pretreatment with superoxide dismutase inhibited the effect of geldanamycin. These findings demonstrate that geldanamycin generates O(2)(*)(-), which scavenges nitric oxide, leading to loss of its bioavailability. This effect is independent of the inhibition of Hsp90 and indicates that geldanamycin cannot be used as a specific inhibitor of Hsp90. In light of these findings, the studies using geldanamycin as an inhibitor of Hsp90 should be interpreted with caution.  相似文献   

15.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   

16.
17.
Heat shock gene expression and function during zebrafish embryogenesis   总被引:3,自引:0,他引:3  
Recent work in the zebrafish, Danio rerio, indicates that heat shock genes are expressed in unique spatial patterns under non-stress conditions. In particular, hsp90alpha is expressed during the normal differentiation of striated muscle fibres, and hsp70-4 is expressed during normal lens development in the eye. Furthermore, disruption of the activity of either of these genes or their protein products gives rise to unique embryonic phenotypes that result from failures in proper somitic muscle development and lens development, respectively. Embryonic hsp70-4 expression is also activated in a cell-specific manner following heavy metal exposure. This has allowed for the development of a hsp70-4/eGFP reporter gene system in stable transgenic zebrafish that serves as a reliable yet extremely quick indicator of cell-specific toxicity in the context of the multicellular, living embryo.  相似文献   

18.
19.
The involvement of heat shock protein Hsp90 in pro-inflammatory response in male NMRI mice under conditions of acute toxic stress, caused by lipopolysaccharide from Gram negative bacteria, was studied using geldanamycin, a specific blocker of the activity of this protein. It is shown that the introduction of geldanamycin lowers total intoxication of the organism upon acute toxic stress caused by endotoxin. Thus, a decrease in cytokine TNF-α, IFN-γ, IL-1, and IL-10 concentrations in blood serum of the geldanamycin-treated animals with acute toxic stress was found along with normalization of functional activity of nitric oxide producing peritoneal macrophages. Studying expression of receptor protein Tlr-4 as well of proteins of two signal cascades, NF-κB and SAPK/JNK, has shown that mechanisms of the geldanamycin protective effect are realized at the level of inhibition of Tlr-4 receptor expression, which provides for endotoxin-to-cell binding, and due to lowering the endotoxin-stimulated activation of signal cascades NF-κB and SAPK/JNK. The results suggest Hsp90 might be a therapeutic target in diseases accompanied by acute toxic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号