首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
The activity of hypoxia-inducible factor 1 (HIF-1) is primarily determined by stability regulation of its alpha subunit, which is stabilized under hypoxia but degraded during normoxia. Hydroxylation of HIF-1alpha by prolyl hydroxylases (PHDs) recruits the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex to initiate proteolytic destruction of the alpha subunit. Hypoxic stabilization of HIF-1alpha has been reported to be antagonized by nitric oxide (NO). By using a HIF-1alpha-pVHL binding assay, we show that NO released from DETA-NO restored prolyl hydroxylase activity under hypoxia. Destabilization of HIF-1alpha by DETA-NO was reversed by free radical scavengers such as NAC and Tiron, thus pointing to the involvement of reactive oxygen species (ROS). Therefore, we examined the effects of ROS on HIF-1alpha stabilization. Treatment of cells under hypoxia with low concentrations of the superoxide generator 2,3-dimethoxy-1,4-naphthoquinone lowered HIF-1alpha protein stabilization. In vitro HIF-1alpha-pVHL interaction assays demonstrated that low-level ROS formation increased prolyl hydroxylase activity, an effect antagonized by ROS scavengers. While determining intracellular ROS formation we noticed that reduced ROS production under hypoxia was restored by the addition of DETA-NO. We propose that an increase in ROS formation contributes to HIF-1alpha destabilization by NO donors under hypoxia via modulation of PHD activity.  相似文献   

4.
Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1alpha requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1alpha expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2'-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1alpha protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1alpha degradation. Furthermore, chelating intracellular calcium attenuated HIF-1alpha destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1alpha even under normoxia. An active role of calpain in lowering HIF-1alpha amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1alpha that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1alpha destruction involving the calpain system.  相似文献   

5.
6.
7.
8.
In the last years, nitric oxide (NO) mediated signaling became an integral component in understanding physiological and pathophysiological processes of cell proliferation, death or cellular adaptation. Among other activities, NO affects multiple targets that allow regulation of gene expression. Recently, NO was found to attenuate accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions because of several mechanisms: redistribution of oxygen toward non-respiratory oxygen-dependent targets (like HIF-1alpha proline hydroxylases--PHDs, which perform hydroxylation of Pro402/564 of HIF-1alpha leading to its proteasomal degradation); in addition, peroxynitrite formed during interactions between NO and mitochondria derived superoxide leads to an increase in cytosolic iron/2-oxoglutarate (2-OG), which required for PHD activation. Here, we propose a hypothesis that peroxynitrite, formed in the cells upon exposure to NO under low oxygen availability, serves as an alternative donor of oxygen for activated PHDs so they can perform HIF-1alpha proline hydroxylation to de-accumulate the protein.  相似文献   

9.
Hypoxia inducible factors (HIF) coordinate cellular responses towards hypoxia. HIFs are mainly regulated by a group of prolyl-hydroxylases (PHDs) that in the presence of oxygen, target the HIFα subunit for degradation. Herein, we studied the role of nitric oxide (NO) in regulating PHD activities under normoxic conditions. In the present study we show that different NO-donors initially inhibited endogenous PHD2 activity which led to accumulation of HIF-1α subsequently to enhance HIF-1 dependent increased PHD2 promoter activity. Consequently PHD2 abundance and activity were strongly induced which caused downregulation of HIF-1α. Interestingly, upregulation of endogenous PHD2 activity by NO was not found in cells that lack an intact pVHL dependent degradation pathway. Recovery of PHD activity required intact cells and was not observed in cell extracts or recombinant PHD2. In conclusion induction of endogenous PHD2 activity by NO is dependent on a feedback loop initiated despite normoxic conditions.  相似文献   

10.
11.
12.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Prolyl-hydroxylation of HIF-1α is a prerequisite for pVHL binding to HIF-1α, which results in degradation of HIF-1α by the ubiquitin-proteasome pathway. Hydroxylation of HIF-1α is mediated by the family of prolyl-hydroxylase proteins (PHD). In hypoxia, HIF-1α is stabilized as a result of inhibition of HIF-1α hydroxylation, which in part is achieved by decreased activity of PHD enzymes at very low oxygen concentrations. We recently demonstrated that in hypoxia the stability of 2 of 3 PHDs (1 and 3) is regulated by the E3 ligases Siah1/2. Consequently, in hypoxia Siah determines the availability of PHD1/3, which otherwise modify HIF-1α to enable its association-dependent degradation by pVHL. These findings define a newly discovered layer in the regulation of HIF-1α in hypoxia. The roles of Siah activities in hypoxia responses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号