首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p75 neurotrophin receptor (p75(NTR)) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75(NTR) retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (DeltaDD) dominant-negative antagonist of p75(NTR) showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75(NTR)-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75(NTR) expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75(NTR) rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75(NTR) was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75(NTR)-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75(NTR) expressing prostate cancer cells.  相似文献   

2.
One of the most important pathological features of Alzheimer's disease (AD) is extracellular senile plaques, whose major component is amyloid-beta peptides (Abeta). Abeta binds to the extracellular domain of p75NTR (p75 neurotrophin receptor) and induces neuronal cell death. We investigated the molecular mechanism of Abeta-induced neurotoxicity in detail from the standpoint of interaction between p75NTR and its recently identified relative, PLAIDD (p75-like apoptosis-inducing death domain). Using F11 neuronal hybrid cells, we demonstrate that there are two distinct pathways for Abeta-induced toxicity mediated by p75NTR. One pathway that has been previously elucidated, is mediated by p75NTR, Go, JNK, NADPH oxidase and caspase3-related caspases. We found that PLAIDD and Gi proteins, heterotrimeric G proteins, are involved in the alternative Abeta-induced neurotoxicity mediated by p75NTR. The alternative pathway triggered by Abeta is thus mediated by p75NTR, PLAIDD, Gi, JNK, NADPH oxidase and caspase3-related caspases. In addition, we found that HN, ADNF, IGF-I, or bFGF inhibits both pathways of Abeta-induced neurotoxicity mediated by p75NTR.  相似文献   

3.
p75 neurotrophin receptor (p75NTR) belongs to the TNF-receptor superfamily and signals apoptosis in many cell settings. In human epidermis, p75NTR is mostly confined to the transit-amplifying (TA) sub-population of basal keratinocytes. Brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), which signals through p75NTR, induces keratinocyte apoptosis, whereas β-amyloid, a ligand for p75NTR, triggers caspase-3 activation to a greater extent in p75NTR transfected cells. Moreover, p75NTR co-immunoprecipitates with NRAGE, induces the phosphorylation of c-Jun N-terminal kinase (JNK) and reduces nuclear factor kappa B (NF-κB) DNA-binding activity. p75NTR also mediates pro-NGF-induced keratinocyte apoptosis through its co-receptor sortilin. Furthermore, BDNF or β-amyloid cause cell death in TA, but not in keratinocyte stem cells (KSCs) or in p75NTR silenced TA cells. p75NTR is absent in lesional psoriatic skin and p75NTR levels are significantly lower in psoriatic than in normal TA keratinocytes. The rate of apoptosis in psoriatic TA cells is significantly lower than in normal TA cells. BDNF or β-amyloid fail to induce apoptosis in psoriatic TA cells, and p75NTR retroviral infection restores BDNF- or β-amyloid-induced apoptosis in psoriatic keratinocytes. These results demonstrate that p75NTR has a pro-apoptotic role in keratinocytes and is involved in the maintenance of epidermal homeostasis.  相似文献   

4.
The p75 neurotrophin receptor (p75(NTR)) plays multiple roles in neuronal physiology through interactions with many ligands and coreceptors. However, its intracellular neuronal trafficking prior to and after neurotrophin activation is still poorly characterized. We have previously shown that in response to nerve growth factor (NGF), p75(NTR) is retrogradely transported along the axons of motor neurons (MNs) in carriers shared with NGF, brain-derived neurotrophic factor and the tyrosine kinase receptor TrkB. Here, we report that NGF does not enhance the internalization or degradation of p75(NTR), which undergoes a rapid dynamin-dependent and clathrin-independent recycling process in MNs. Instead, incubation of cells with NGF leads to the redirection of a pool of plasma membrane p75(NTR) into clathrin-coated pits. The subsequent internalization of p75(NTR) via clathrin-mediated endocytosis, as well as the activity of Rab5, are essential for the sorting of the p75(NTR)-containing endosomes to the axonal retrograde transport pathway and for the delivery of p75(NTR) to the soma. Our findings suggest that the spatial regulation of p75(NTR) signalling is controlled by these ligand-driven routes of endocytosis.  相似文献   

5.
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.  相似文献   

6.
Epidermal growth factor (EGF)-treated neurospheres from fetal forebrain contain multipotential cells capable of neuronal, astrocytic, and oligodendroglial differentiation. These neural precursor cells express the TrkB as well as the neurotrophin receptor p75 (p75NTR), suggesting that they are BDNF responsive. In this study, we test whether the p75NTR plays a role in the differentiation of these neural precursor cells in vitro. Activation of the TrkB and the p75NTR by the addition of BDNF facilitates neuronal commitment and marked neurite genesis. However, no promotion of neuronal commitment by BDNF was observed in the neural precursor cells from mice carrying a mutation in the p75NTR gene. In addition, we observed a significant increase in the number of nestin-positive cells and the proliferation of the cells lacking functional p75NTR. These findings suggest that the p75NTR is required for proper neuronal fate decision as well as the differentiation of the neural precursor cells.  相似文献   

7.
The neurotrophin receptor p75NTR can induce signal transduction both in vivo and in vitro. The mechanisms by which p75NTR transduces signals have remained mostly unknown. Using yeast two-hybrid system, we identified the Ran-binding protein (RanBPM) as an interactor with the intracytoplasmic domain of p75NTR (p75ICD). The interaction was then validated by immunoprecipitation in mammalian cells and immunoblotting analysis. The domain in p75ICD interacting with RanBPM was mapped to the death domain.  相似文献   

8.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

9.
Myelin-associated glycoprotein (MAG) is a potent inhibitor of neurite outgrowth from a variety of neurons. The receptor for MAG or signals that elicit morphological changes in neurons remained to be established. Here we show that the neurotrophin receptor p75 (p75(NTR)) is the signal transducing element for MAG. Adult dorsal root ganglion neurons or postnatal cerebellar neurons from mice carrying a mutation in the p75(NTR) gene are insensitive to MAG with regard to neurite outgrowth. MAG activates small GTPase RhoA, leading to retarded outgrowth when p75(NTR)) is present. Colocalization of p75(NTR) and MAG binding is seen in neurons. Ganglioside GT1b, which is one of the binding partners of MAG, specifically associates with p75(NTR). Thus, p75(NTR) and GT1b may form a receptor complex for MAG to transmit the inhibitory signals in neurons.  相似文献   

10.
Re-expression of the death-signalling p75 neurotrophin receptor (p75NTR) is associated with injury and neurodegeneration in the adult nervous system. The induction of p75NTR expression in mature degenerating spinal motor neurons of humans and transgenic mice with amyotrophic lateral sclerosis (ALS) suggests a role of p75NTR in the progression of motor neuron disease (MND). In this study, we designed, synthesized and evaluated novel antisense peptide nucleic acid (PNA) constructs targeting p75NTR as a potential gene knockdown therapeutic strategy for ALS. An 11-mer antisense PNA directed at the initiation codon, but not downstream gene sequences, dose-dependently inhibited p75NTR expression and death-signalling by nerve growth factor (NGF) in Schwann cell cultures. Antisense phosphorothioate oligonucleotide (PS-ODN) sequences used for comparison failed to confer such inhibitory activity. Systemic intraperitoneal administration of this antisense PNA to mutant superoxide dismutase 1 (SOD1G93A) transgenic mice significantly delayed locomotor impairment and mortality compared with mice injected with nonsense or scrambled PNA sequences. Reductions in p75NTR expression and subsequent caspase-3 activation in spinal cords were consistent with increased survival in antisense PNA-treated mice. The uptake of fluorescent-labelled antisense PNA in the nervous system of transgenic mice was also confirmed. This study suggests that p75NTR may be a promising antisense target in the treatment of ALS.  相似文献   

11.
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.  相似文献   

12.
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.  相似文献   

13.
The common neurotrophin receptor (p75(NTR) ) regulates various functions in the developing and adult nervous system. Cell survival, cell death, axonal and growth cone retraction, and regulation of the cell cycle can be regulated by p75(NTR) -mediated signals following activation by either mature or pro-neurotrophins and in combination with various co-receptors, including Trk receptors and sortilin. Here, we review the known functions of p75(NTR) by cell type, receptor-ligand combination, and whether regulated intra-membrane proteolysis of p75(NTR) is required for signalling. We highlight that the generation of the intracellular domain fragment of p75(NTR) is associated with many of the receptor functions, regardless of its ligand and co-receptor interactions.  相似文献   

14.
15.
Amyloid-β (Aβ) peptides can exist in distinct forms including monomers, oligomers and fibrils, consisting of increased numbers of monomeric units. Among these, Aβ oligomers are implicated as the primary toxic species as pointed by multiple lines of evidence. It has been suggested that toxicity could be rendered by the soluble higher-molecular-weight (high-n) Aβ oligomers. Yet, the most culpable form in the pathogenesis of Alzheimer’s disease (AD) remains elusive. Moreover, the potential interaction among the insoluble fibrils that have been excluded from the responsible aggregates in AD development, Aβ monomers and high-n oligomers is undetermined. Here, we report that insoluble Aβ fibrillar seeds can interact with Aβ monomers at the stoichiometry of 1:2 (namely, each Aβ molecule of seed can bind to two Aβ monomers at a time) facilitating the fibrillization by omitting the otherwise mandatory formation of the toxic high-n oligomers during the fibril maturation. As a result, the addition of exogenous Aβ fibrillar seeds is seen to rescue neuronal cells from Aβ cytotoxicity presumably exerted by high-n oligomers, suggesting an unexpected protective role of Aβ fibrillar seeds.  相似文献   

16.
Functional inhibition of the p75 receptor using a small interfering RNA   总被引:6,自引:0,他引:6  
The neurotrophin receptor p75(NTR) mediates a wide variety of biological effects. Consistent with the function in controlling the survival and neurite formation, p75(NTR) is expressed during the developmental stages of the nervous system. Importantly, p75(NTR) is re-expressed in various pathological conditions and is suggested to contribute to the inhibition of neuronal regeneration and the death of the neurons. Here we develop a tool to knock down the expression of p75(NTR) by employing a small interfering RNA (siRNA). The siRNA for p75(NTR) effectively reduces the expression of endogenous p75(NTR) both in Schwann cells and dorsal root ganglion neurons in vitro. NGF-induced cell death in Schwann cells and the neurite retraction in DRG neurons induced by myelin-associated glycoprotein are attenuated by the siRNA. Inhibition of p75(NTR) in specific pathological conditions by the siRNA may provide a potential therapeutic agent.  相似文献   

17.
The p75 neurotrophin receptor (p75(NTR)), a common receptor for members of the neurotrophins (NT) family, was previously identified as a molecular determinant of brain metastasis. We have also reported that NT treatment of murine and human brain-metastatic melanoma cells affects their invasive capacities and increases the production of heparanase, an important and unique extracellular matrix (ECM) degradative enzyme. Neurotrophism can be a survival-support mechanism for brain-metastatic cells and a survival assay was devised to mimic the growth limiting conditions of rapidly expanding metastatic tumors prior to neoangiogenesis. We report that p75(NTR) promoted the survival of brain-metastatic melanoma cells but not melanocytes in stress cultures conditions. Secondly, melanoma cells fluorescently sorted for high p75(NTR) expression (p75(NTR-H) cells) had an up to a 15-fold greater survival than those sorted for low p75(NTR) expression (p75(NTR-L) cells). Thirdly, cells overexpressing p75(NTR) associated with the growth fraction and provided these cells with an inherent growth advantage. Finally, we observed an increased survival of sorted p75(NTR-L) cells, dependent upon treatment of NT members whose functional receptors are present on these cells. Together, these results delineate that p75(NTR)-mediated trophic support profoundly affects competitive melanoma-cell survival when the tumor cell microenvironment becomes growth limiting.  相似文献   

18.
目的:构建大鼠p75神经营养素受体(p75 neurotrophin receptor,p75NTR)cDNA序列的绿色荧光真核表达载体并鉴定其在人胚肾293(human embryo kidney 293,HEK293)细胞中的表达.方法:采用PCR方法从含野生型大鼠p75NTR的pDC316-RP75质粒中扩增目的片段,经EcoRⅠ和SaⅡ双酶切,定向克隆于pEGFP-N1质粒中,构建绿色荧光真核表达栽体pEGFP-N1-RP75,经酶切及测序鉴定后,通过脂质体转染HEK293细胞,激光共聚焦及免疫组织化学法鉴定大鼠p75NTR的表达.结果:重组质粒经酶切鉴定和序列分析证实含有大鼠p75NTR的编码序列,转染后经激光共聚焦显微镜及免疫组织化学染色观察表明重组质粒能够在HEK293细胞中表达出具有活性的大鼠p75NTR片段.结论:大鼠p75NTR绿色荧光真核表达栽体构建成功并可在HEK293细胞中表达,为进一步研究奠定了基础.  相似文献   

19.
20.
神经生长因子低亲和力受体(p75NTR)的模拟配基的筛选   总被引:1,自引:0,他引:1  
人神经生长因子低亲和力受体 (p75NTR)转染R2细胞而建立的R2L1细胞 ,在去血清培养时发生凋亡 ,该作用可被神经生长因子 (NGF)所抑制 .用R2L1和R2两种细胞差式筛选噬菌体随机 7肽库和 1 2肽库 ,获得和p75NTR特异结合的噬菌体 .测定DNA序列后得到有关多肽的氨基酸序列 .7肽库共有序列为C (H D)LP(K M)HPM C ;1 2肽库优势序列为TLPSPLALLTVH .化学合成相应的 2个短肽 .用细胞结合法和ELISA方法证实阳性噬菌体和合成短肽能与p75NTR结合 ,并证实了它们对R2L1细胞去血清培养后的凋亡有抑制作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号