首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between human fibroblast collagenase and five mammalian alpha-macroglobulins (human alpha 2-macroglobulin and pregnancy zone protein, rat alpha 1- and alpha 2-macroglobulin, and rat alpha 1-inhibitor 3) differing in primary and quaternary structure has been investigated. Complex formation with each of these alpha-macroglobulins follows the course identified for many other proteinases, i.e. specific limited proteolysis in their bait regions inducing a set of conformational changes resulting in activation of the internal beta-cysteinyl-gamma-glutamyl thiol esters and covalent complex formation. At collagenase: alpha-macroglobulin molar ratios of less than 1:1 3.2-3.6 mol of SH groups appear for 1 mol of collagenase bound to human and rat alpha 2-macroglobulin and to rat alpha 1-macroglobulin. For these alpha-macroglobulins it can be estimated that the overall rate constant of complex formation is greater than 1.10(6) M-1 s-1 while it is much lower for human pregnancy zone protein and rat alpha 1-inhibitor 3. More than 95% of the complexed collagenase is covalently bound, and sodium dodecyl sulfate gel electrophoresis shows the typical pattern of bands corresponding to reaction products of very high apparent molecular weight. The same pattern is also seen in the covalent (greater than 98%) complex very slowly formed from Clostridium histolyticum collagenase and human alpha 2-macroglobulin. The identification of the sites of specific limited proteolysis in the bait regions of the five alpha-macroglobulins shows that cleavage may take place in sequences that are not related to those identified earlier in the collagens. These results greatly expand the repertoire of sequences known to be cleaved by fibroblast collagenase and suggest that this proteinase has a primary substrate specificity resembling that of the microbial proteinase thermolysin, as it preferentially cleaves at the NH2-terminal side of large hydrophobic residues. In addition, the results highlight the unique structure of the flexible alpha-macroglobulin bait region in that it can accommodate a conformation required by the highly restrictive fibroblasts collagenase. It is suggested that alpha-macroglobulins may play an important role in locally controlling the activity of collagenases and perhaps other proteinases of the extracellular matrix.  相似文献   

2.
cDNA clones coding for the plasma proteinase inhibitor alpha 1-inhibitor III were isolated from an acute phase rat liver library. The isolates could be divided into four groups with characteristic BamHI restriction fragment patterns. The identity of the prototype clone pRLA1I3/2J was established by comparison with the published amino acid sequence of the purified protein. It codes for a 1477-amino acid precursor polypeptide with a 24-residue signal peptide. The mature protein shares 58% overall sequence identity with rat alpha 2-macroglobulin and contains a typical internal thiolester sequence. Twenty-two of its twenty-three cysteinyl residues are conserved with alpha 2-macroglobulin implying similar tertiary structure. However, the prototype alpha 1-inhibitor III sequence differed significantly from the rat and human alpha 2-macroglobulin sequences in its bait region suggesting alpha 1-inhibitor III possesses proteinase inhibitory specificities different from those of alpha 2-macroglobulin. The variant alpha 1-inhibitor III clone pRLA1I3/2J from a second cDNA group also differed from the prototype in the bait region coding sequence, although both specify similar signal peptides and NH2 termini. The observation of variant cDNA classes suggests that acute phase rat livers produce a heterogeneous mixture of alpha 1-inhibitor III mRNA molecules. Evidence was obtained for the presence of at least four different alpha 1-inhibitor III-related genes in the rat genome. During the first 24 h of an acute phase response the abundance of hepatic alpha 1-inhibitor III mRNA was decreased 3-4-fold. This decrease was of the same order of magnitude as the reported reduction of the corresponding plasma protein concentration, suggesting that in the early phase of the acute inflammatory response the plasma concentration of this protein is mainly controlled through the abundance of its hepatic mRNA.  相似文献   

3.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

4.
The amino acid sequence of the monomeric alpha-macroglobulin (alphaM) from the American bullfrog, Rana catesbiana, was determined. The mature protein consisted of 1469 amino acid residues and shared sequence identity with other members of the alphaM family of protein. The central portion of the frog monomeric alphaM contained Cys residues positioned analogously to the Cys residues in human alpha(2)-macroglobulin (alpha(2)M), known to be involved in disulfide bridges. Additionally, the frog monomeric alphaM contained six Cys residues in a approximately 60 residue COOH-terminal extension not present in previously characterized alphaMs. The spacing of the Cys residues and the overall sequence identity of this COOH-terminal extension were consistent with a trefoil motif. This is the first time a member of the trefoil factor family has been identified in the circulatory system. The "bait region" was located between Arg(675)-Lys(685) and contained mainly basic amino acid residues. The COOH-terminal receptor-binding domain was not exposed prior to proteolysis of this highly susceptible region. The proximity of the receptor-binding and trefoil domains implied that the trefoil domain is similarly concealed before bait region cleavage.  相似文献   

5.
Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.  相似文献   

6.
P Gettins  L W Cunningham 《Biochemistry》1986,25(18):5011-5017
The 1H NMR spectrum of human alpha 2-macroglobulin, Mr 716,000, consists of predominantly extremely broad unresolved resonances but also has nine relatively sharp (delta nu 1/2 less than 25 Hz) resonances from aromatic residues. By treatment of alpha 2-macroglobulin with methylamine, chymotrypsin, and subtilisin, it has been shown that eight of these resonances arise from bait region residues. More specifically, assignment has been made of resonances at 6.80 and 7.11 ppm to the ortho and meta protons, respectively, of tyrosine-685 and tentative assignment of a resonance at 7.29 ppm to the aromatic protons of phenylalanine-684. C2 proton resonances from five histidine residues are also visible. Four of these are attributed to residues in the bait region or immediately adjacent to this, at positions 675, 694, 699, and 704. The sharpness of resonances from bait region residues demonstrates the great flexibility of this region of the polypeptide. It is proposed that the flexible region extends from residue 675 to residue 710. These resonances are all affected by proteolytic cleavage in the bait region but are not influenced by the subsequent conformational rearrangement of the whole protein tetramer. The significance of these findings is discussed in relation to the current structural models of alpha 2-macroglobulin.  相似文献   

7.
We compared the physicochemical characteristics of alpha 2-macroglobulin (alpha 2M) monomers produced by limited reduction and carboxamidomethylation to those of the naturally occurring monomeric alpha-macroglobulin homologue rat alpha 1-inhibitor 3 (alpha 1 I3). Unlike alpha 1 I3, alpha 2 M monomers fail to inhibit proteolysis of the high molecular weight substrate hide powder azure by trypsin. In contrast to alpha 1 I3, which remains monomeric after reacting with proteinase, alpha 2 M monomers reassociate to higher molecular weight species (dimers, trimers, and tetramers) after reacting with proteinase. Reaction of alpha 2 M monomers at molar ratios of proteinase to alpha 2M monomers as low as 0.3:1 leads to extensive reassociation and is accompanied by complete bait-region and thiolester bond cleavage. During the reaction of alpha 2M monomers with proteinases, the proteinase binds to the reassociating alpha 2M subunits but is not inhibited. Of significance, all the bound proteinase was covalently linked to the reassociated alpha 2M species. Treatment of alpha 2M monomers with methylamine results in thiolester bond cleavage but minimal reassociation. Treatment of alpha 2M monomers with methylamine followed by proteinase results in complete bait-region cleavage and is accompanied by marked reassociation of alpha 2M monomers to higher molecular weight species. However, no proteinase is associated with these higher molecular weight forms. We infer that bait-region cleavage is more important than thiolester bond cleavage in driving alpha 2M monomers to reassociate. Despite many similarities between alpha 1I3 and alpha 2M monomers, significant differences must exist with respect to proteinase orientation within the inhibitor to account for the failure of alpha 2M monomers to protect large molecular weight substrates from proteolysis by bound proteinase, in contrast to the naturally occurring monomeric homologue rat alpha 1 I3.  相似文献   

8.
9.
10.
P A Roche  M D Moncino  S V Pizzo 《Biochemistry》1989,28(19):7629-7636
Treatment of the human plasma proteinase inhibitor alpha 2-macroglobulin (alpha 2M) with proteinase results in conformational changes in the inhibitor and subsequent activation and cleavage of the internal thiolester bonds of alpha 2M. Previous studies from this laboratory have shown that cross-linking the alpha 2M subunits with cis-dichlorodiammineplatinum(II) (cis-DDP) prevents the proteinase-induced conformational changes which lead to the activation and cleavage of the internal thiolester bonds of alpha 2M. In addition, cis-DDP treatment prevents the proteinase- or CH3NH2-induced conformational changes in alpha 2M which lead to a "slow" to "fast" change in nondenaturing polyacrylamide gel electrophoresis. In this paper, we demonstrate that treatment of alpha 2M with dithiobis(succinimidyl propionate) (DSP) also results in cross-linking of the subunits of alpha 2M with concomitant loss of proteinase inhibitory activity. Although proteinase is not inhibited by DSP-treated alpha 2M, bait region specific proteolysis of the alpha 2M subunits still occurs. Unlike cis-DDP-treated alpha 2M, however, incubation of DSP-treated alpha 2M with proteinase does not prevent the bait region cleavage dependent conformational changes which lead to activation and cleavage of the internal thiolester bonds in alpha 2M. On the other hand, cross-linking of alpha 2M with DSP does prevent the conformational changes which trigger receptor recognition site exposure following cleavage of the alpha 2M thiolester bonds by CH3NH2. These conformational changes, however, occur following incubation of the CH3NH2-treated protein with proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Rat plasma alpha 1-inhibitor3: a member of the alpha-macroglobulin family   总被引:1,自引:0,他引:1  
The overall mechanism of interaction with proteinases of alpha 1-inhibitor3, a plasma proteinase inhibitor so far specific to the rat, has been shown to be closely similar to that described for alpha-macroglobulins. This mechanism includes: (i) the cleavage of at least one susceptible peptidic bond which leads to structural changes in the molecule. (ii) The cleavage of a putative thiol ester bond in another site of the molecule which permits the covalent linkage of the enzyme. Moreover, fragmentation of alpha 1-inhibitor3 upon heating as observed for alpha-macroglobulin quarter subunits has been demonstrated. The question is raised of the presence of such a molecule in rat plasma in addition to two alpha-macroglobulin species, all of these proteinase inhibitors being antigenically unrelated.  相似文献   

12.
The inhibitory capacity of the alpha-macroglobulins resides in their ability to entrap proteinase molecules and thereby hinder the access of high molecular weight substrates to the proteinase active site. This ability is thought to require at least two alpha-macroglobulin subunits, yet the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3 (alpha 1I3) also inhibits proteinases. We have compared the inhibitory activity of alpha 1I3 with the tetrameric human homolog alpha 2-macroglobulin (alpha 2M), the best known alpha-macroglobulin, in order to determine whether these inhibitors share a common mechanism. alpha 1I3, like human alpha 2M, prevented a wide variety of proteinases from hydrolyzing a high molecular weight substrate but allowed hydrolysis of small substrates. In contrast to human alpha 2M, however, the binding and inhibition of proteinases was dependent on the ability of alpha 1I3 to form covalent cross-links to proteinase lysine residues. Low concentrations of proteinase caused a small amount of dimerization of alpha 1I3, but no difference in inhibition or receptor binding was detected between purified dimers or monomers. Kininogen domains of 22 and 64 kDa were allowed to react with alpha 1I3- or alpha 2M-bound papain to probe the accessibility of the active site of this proteinase. alpha 2M-bound papain was completely protected from reaction with these domains, whereas alpha 1I3-bound papain reacted with them but with affinities several times weaker than uncomplexed papain. Cathepsin G and papain antisera reacted very poorly with the enzymes when they were bound by alpha 1I3, but the protection provided by human alpha 2M was slightly better than the protection offered by the monomeric rat alpha 1I3. Our data indicate that the inhibitory unit of alpha 1I3 is a monomer and that this protein, like the multimeric alpha-macroglobulins, inhibits proteinases by steric hindrance. However, binding of proteinases by alpha 1I3 is dependent on covalent crosslinks, and bound proteinases are more accessible, and therefore less well inhibited, than when bound by the tetrameric homolog alpha 2M. Oligomerization of alpha-macroglobulin subunits during the evolution of this protein family has seemingly resulted in a more efficient inhibitor, and we speculate that alpha 1I3 is analogous to an evolutionary precursor of the tetrameric members of the family exemplified by human alpha 2M.  相似文献   

13.
The sites of cleavage in the "bait region" of human alpha 2-macroglobulin made by both neutrophil elastase and cathepsin G, as the first step in their inactivation by this inhibitor, have been identified. These positions are at a valylhistidyl bond for elastase and a phenylalanyl-tyrosyl bond for cathepsin G. All of the proteinases tested so far, including those utilized in this study, are cleaving within a twenty-seven aminoacid peptide sequence occurring between two proline residues. It is suggested that this area represents the outer limits of the "bait region" loop.  相似文献   

14.
Efforts to characterize the receptor recognition domain of alpha-macroglobulins have primarily focused on human alpha 2-macroglobulin (alpha 2M). In the present work, the structure and function of the alpha-macroglobulin receptor recognition site were investigated by amino acid sequence analysis, plasma clearance, and cell binding studies using several nonhuman alpha-macroglobulins: bovine alpha 2M, rat alpha 1-macroglobulin (alpha 1M), rat alpha 1-inhibitor 3 (alpha 1I3), and proteolytic fragments derived from these proteins. Each alpha-macroglobulin bound to the murine peritoneal macrophage alpha-macroglobulin receptor with comparable affinity (Kd approximately 1 nM). A carboxyl-terminal 20-kDa fragment was isolated from each of these proteins, and this fragment bound to alpha-macroglobulin receptors with Kd values ranging from 10 to 125 nM. The amino acid identity between the homologous carboxyl-terminal 20-kDa fragments of human and bovine alpha 2M was approximately 90%, while the overall sequence homology between all carboxyl-terminal fragments studied was 75%. The interchain disulfide bond present in the human alpha 2M carboxyl-terminal 20-kDa fragment was conserved in bovine alpha 2M and rat alpha 1I3, but not in rat alpha 1M. The clearance of each intact alpha-macroglobulin-proteinase complex was significantly retarded following treatment with cis-dichlorodiammineplatinum(II) (cis-DDP). cis-DDP treatment, however, did not affect receptor recognition of purified carboxyl-terminal 20-kDa fragments of these alpha-macroglobulins. A carboxyl-terminal 40-kDa subunit, which can be isolated from rat alpha 1M, bound to the murine alpha-macroglobulin receptor with a Kd of 5 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The isolation of the 26 CNBr fragments from the identical Mr = 180,000 subunits of human alpha 2-macroglobulin is described. The fragments have been purified by combinations of gel chromatography, ion-exchange chromatography, high voltage paper electrophoresis, paper chromatography, and high performance liquid chromatography. The complete amino acid sequences of 13 small CNBr fragments have been determined. These fragments include CB1 (residues 1-9), CB3 (residues 79-98), CB4 (residues 99-128), CB9 (residues 442-477), CB10 (residues 478-497), CB13 (residues 644-650), CB14 (residues 651-665), CB15 (residues 666-674), CB16 (residues 675-690), CB19 (residues 937-945), CB20 (residues 946-954), CB24 (residues 1356-1362), and CB25 (residues 1363-1375). The fragments determined account for 200 of the 1451 residues of the subunits of alpha 2-macroglobulin. Most likely, Cys-6 of CB9 is bound to the corresponding residue in CB9 from another subunit, thus forming an interchain disulfide bridge in alpha 2-macroglobulin. Cys-1 of CB15 is bound to Cys-35 of CB12. CB15 contains a pair of Gln residues that can react covalently with amines in a factor XIIIa-catalyzed process (Gln-5 and Gln-6). CB16 contains the primary cleavage sites for proteinases in the bait region of alpha 2-macroglobulin (-Arg7-Val-Gly-Phe-Tyr-Glu-). CB20 contains the residues which in native alpha 2-macroglobulin presumably form an internal reactive beta-cysteinyl-gamma-glutamyl thiol ester (Cys-4 and Glx-7). Partial NH2- and COOH-terminal sequence data are given for the 13 large CNBr fragments. Complete or partial sequence determination of 19 methionine-containing peptides or variants thereof allow the alignment of all the CNBr fragments.  相似文献   

16.
The interaction between four Crotalus atrox hemorrhagic metalloproteinases and human alpha 2-macroglobulin was investigated. The proteolytic activity of the hemorrhagic toxins Ht-c, -d, and -e against the large molecular weight protein substrates, gelatin type I and collagen type IV, was completely inhibited by alpha 2-macroglobulin. The proteolytic activity of Ht-a against the same substrates was not significantly inhibited. Each mole of alpha 2-macroglobulin bound maximally 2 mol of Ht-e and 1.1 mol of Ht-c and Ht-d. These proteinases interacted with alpha 2-macroglobulin rapidly at 22 degrees C. Rate constants based on intrinsic fluorescence measurements were 0.62 X 10(5) M-1 s-1 for interaction of alpha 2-macroglobulin with Ht-c and -d and 2.3 X 10(5) M-1 s-1 for the interaction of alpha 2-macroglobulin with Ht-e. Ht-a interacted with alpha 2-macroglobulin very slowly at 22 degrees C. Increasing the temperature to 37 degrees C and prolonging the time of interaction with alpha 2-macroglobulin resulted in the formation of Mr 90,000 fragments and high molecular weight complexes (Mr greater than 180,000), in which Ht-a is covalently bound to the carboxy-terminal fragment of alpha 2-M. The identification of the sites of specific proteolysis of alpha 2-macroglobulin shows that the cleavage sites for the four metalloproteinases are within the bait region of alpha 2-macroglobulin. Ht-c and -d cleave only at one site, the Arg696-Leu697 peptide bond, which is also the site of cleavage for plasmin, thrombin, trypsin, and thermolysin. Ht-a cleaves alpha 2-macroglobulin primarily at the same site, but a secondary cleavage site at the His694-Ala695 peptide bond was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
C1-inhibitor is a serine proteinase inhibitor that is active against C1s, C1r, kallikrein, and factor XII. Recently, it has been shown that it also has inhibitory activity against chymotrypsin. We have investigated this activity of normal human C1-inhibitor, normal rabbit C1-inhibitor, and P1 Arg to His mutant human C1-inhibitors and find that all are able to inhibit chymotrypsin and form stable sodium dodecyl sulfate-resistant complexes. The Kass values show that the P1 His mutant is a slightly better inhibitor of chymotrypsin than normal human C1-inhibitor (3.4 x 10(4) compared with 7.3 x 10(3)). The carboxy-terminal peptide of normal human C1-inhibitor, derived from the dissociated protease-inhibitor complex, shows cleavage between the P2 and P1 residues. Therefore, as with alpha 2-antiplasmin, C1-inhibitor possesses two overlapping P1 residues, one for chymotrypsin and the other for Arg-specific proteinases. In contrast, with the P1 His mutant, the peptide generated from the dissociation of its complex with chymotrypsin demonstrated cleavage between the P1 and P'1 residues. Therefore, unlike alpha 2-antiplasmin, chymotrypsin utilizes the P2 residue as its reactive site in normal C1-inhibitor but utilizes the P1 residue as its reactive site in the P1 His mutant protein. This suggests that the reactive center loop allows a degree of induced fit and therefore must be relatively flexible.  相似文献   

18.
Mouse plasma alpha-2-macroglobulin (m alpha 2M) was isolated and the N-terminal amino-acid sequences determined after separation of the 165-kDa and 35-kDa subunits. These sequences were compared to the protein sequence predicted by the cDNA, which was cloned from a mouse liver library and sequenced. From these data it is evident that both subunits are encoded by one mRNA of approximately 5 kb expressed predominantly in liver. The smaller subunit, with the N-terminal sequence DLSSSDLT, comprises the C-terminal 257 residues of m alpha 2M and is derived from a single-chain precursor probably by proteolytic processing at an arginine residue in the sequence PTRDLSS. Analysis of the predicted protein further showed all the salient features of a proteinase inhibitor of the macroglobulin family: a bait region that deviates from all known sequences in this family, a very conserved internal thiolester site and conserved cysteine residues and putative N-glycosylation sites. The synthesis of m alpha 2M in adult liver was demonstrated by Northern blotting and in fetal liver by in-situ hybridization. Transient transfection of COS cells with the cDNA under control of a viral promoter demonstrated the secretion and partial processing of m alpha 2M in the culture medium. In plasma the level of m alpha 2M was found to be stable as expected for the murine counterpart of human plasma alpha-2-macroglobulin. The possibilities of using the mouse as a genetic model to study this proteinase inhibitor in vivo are discussed.  相似文献   

19.
Different conformational states of human alpha 2-macroglobulin (alpha 2M) and pregnancy zone protein (PZP) were investigated following modifications of the functional sites, i.e. the 'bait' regions and the thiol esters, by use of chymotrypsin, methylamine and dinitrophenylthiocyanate. Gel electrophoresis, mAb (7H11D6 and alpha 1:1) and in vivo plasma clearance were used to describe different molecular states in the proteinase inhibitors. In alpha 2M, in which the thiol ester is broken by binding of methylamine and the 'trap' is closed, cyanylation of the liberated thiol group from the thiol ester modulates reopening of the 'trap' and the 'bait' regions become available for cleavage again. The trapping of proteinases in the cyanylated derivative indicates that the trap functions as in native alpha 2M. In contrast, cyanylation has no effect on proteinase-treated alpha 2M. As demonstrated by binding to mAb, the methylamine and dinitrophenylthiocyanate-treated alpha 2M exposes the receptor-recognition site, but the derivative is not cleared from the circulation in mice. The trap is not functional in PZP. In native PZP and PZP treated with methylamine, the conformational states seem similar. The receptor-recognition sites are not exposed and removal from the circulation in vivo is not seen for these as for the PZP-chymotrypsin complex. Tetramers are only formed when proteinases can be covalently bound to the PZP. Conformational changes are not detected in PZP derivatives in which the thiol ester is treated with methylamine and dinitrophenylthiocyanate. The results suggest that the conformational changes in alpha 2M are generated by mechanisms different to these in PZP. The key structure gearing the conformational changes in alpha 2M is the thiol ester, by which the events 'trapping' and exposure of the receptor-recognition site can be separated. In PZP, the crucial step for the conformational changes is the cleavage of the 'bait' region, since cleavage of the thiol ester does not lead to any detectable conformational changes by the methods used.  相似文献   

20.
Rat alpha 1-inhibitor-3 is a 180-kDa monomeric proteinase inhibitor found in high concentration in rat plasma. By several criteria it has been shown to be a member of the family of alpha-macroglobulin proteinase inhibitors often exemplified by the tetrameric human alpha 2-macroglobulin. We have used limited proteolysis of rat alpha 1-inhibitor-3 to probe the domain structure of this family of proteins. Proteinases of different specificities, including trypsin, chymotrypsin, thermolysin, and Staphylococcus aureus V8 proteinase, were employed and a common fragmentation pattern was observed when the reaction products were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These fragments were electrotransferred to polyvinylidene difluoride membranes and subjected to NH2-terminal amino acid sequence analysis in order to position them within the context of the primary structure. The fragmentation pattern may define the domain structure of alpha 1-inhibitor-3 and serve as a model for the domain organization of the family of alpha-macroglobulin proteinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号