共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible inhibition and mechanism-based irreversible inactivation of monoamine oxidases by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 总被引:3,自引:0,他引:3
T P Singer J I Salach D Crabtree 《Biochemical and biophysical research communications》1985,127(2):707-712
It has been suggested (Chiba et al., Biochem. Biophys. Res. Communs. (1984) 120, 574) that the neurotoxic effects of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which causes Parkinsonian symptoms in humans and other primates, are due to compounds resulting from the oxidation of MPTP by monoamine oxidase B in the brain. We reported recently that both monoamine oxidase A and B oxidize MPTP to MPDP+, the 2,3-dihydropyridinium form and that the reaction is accompanied by time-dependent, irreversible inactivation of the enzymes. Of the two forms of monoamine oxidase, the B enzyme oxidizes MPTP more rapidly and is also more sensitive to inactivation. We now wish to report that MPTP, as well as its oxidation products, MPDP+ and MPP+, the 4-phenylpyridinium form, are also potent reversible, competitive inhibitors of both monoamine oxidase A and B, particularly the former, and that the order of inhibition for the A enzyme is MPDP+ greater than MPP+ greater than MPTP, while for the B enzyme MPTP greater than MPDP+ greater than MPP+. We further report on the spectral changes and isotope incorporation accompanying the irreversible inactivation. 相似文献
2.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin, which can damage dopaminergic neurons. It causes symptoms resembling those observed in patients suffering from Parkinson's disease, and hence this toxin is widely used in studies on animal models of this disorder. Mutagenicity of MPTP was also reported by some authors, but results obtained by others suggested that this compound is not mutagenic. Interestingly, those contrasting results were based on the same assay (the Ames test). Therefore, we aimed to test MPTP mutagenicity by employing a recently developed Vibrio harveyi assay, which was demonstrated previously to be more sensitive than the Ames test, at least for some mutagens. We found that MPTP showed a significant mutagenic activity. Moreover, MPTP mutagenicity was attenuated by methylxanthines, compounds that are known to form complexes with aromatic mutagens. 相似文献
3.
Photoinactivation of B-type monoamine oxidase by a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolite 总被引:1,自引:0,他引:1
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed. 相似文献
4.
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, K
m for the substrate (acetylthiocholine), was found to be 0.216 mM and K
i for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation. 相似文献
5.
Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria 总被引:23,自引:0,他引:23
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an impurity in certain batches of illicit heroin substitutes, is known to cause parkinsonian symptoms and degeneration of the nigrostriatal cells in drug abusers and primates. Neurotoxicity depends on oxidation of MPTP by monoamine oxidase in brain cells to the dihydropyridinium form, which is further oxidized to N-methyl-4-phenylpyridinium (MPP+), the 4-electron oxidation product. The latter is widely believed to be the compound responsible for neuronal destruction and the NADH dehydrogenase of the inner membrane has been postulated to be its target. This enzyme is inhibited, however, only at very high concentrations of MPP+, while the steady-state concentration of MPP+ in the nigrostriatal cells of MPTP-treated animals is several orders of magnitude lower. This paradox has now been resolved by the discovery of an energized uptake system for MPP+ in mitochondria which rapidly concentrates MPP+ to very high concentrations in the mitochondria at micromolar external concentrations. The process is dependent on the electrical gradient of the membrane, has a Km of about 5 mM, and is completely blocked by respiratory inhibitors and uncouplers. 相似文献
6.
S Ottoboni P Caldera A Trevor N Castagnoli 《The Journal of biological chemistry》1989,264(23):13684-13688
Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-CD3-2,2,6,6-d4. The deuterium isotope effect for the electrochemical oxidation of 1 mM MPTP-2,2,6,6-d4 was only 1.35. These results indicate that the monoamine oxidase B-catalyzed oxidation of this substrate may not proceed via a reaction pathway involving alpha-carbon deprotonation of an aminium radical intermediate. Isotope effect measurements also established that the rate of inactivation of monoamine oxidase B by MPTP is unaffected by replacement of the C-6 methylene protons with deuterons, but is retarded by replacement of the C-2 methylene protons (DKi = 1.9). The mechanism-based inactivation of monoamine oxidase B by MPTP, therefore, is likely to mediated by a species derived from the enzyme-generated 2,3-dihydropyridinium oxidation product. 相似文献
7.
G N Kryzhanovski? M A Atadzhanov V A Zagorevski? L M Sharkova T A Voronina 《Biulleten' eksperimental'no? biologii i meditsiny》1988,105(4):397-401
Systemic administration of high doses of MPTP caused transient bradykinesia, "freezing" episodes, head tremors, hunching of the back and peripheral autonomic effects. Neurological syndrome was clearly dose-dependent. It has been established that Parkinson's syndrome is caused by high-amplitude paroxysmal discharges in the nucleus caudatis. It is concluded that the nucleus caudatis plays the role of a pathological determinant structure in the development of Parkinson's syndrome induced by MPTP. 相似文献
8.
S Szabo A Brown G Pihan H Dali J L Neumeyer 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1985,180(3):567-571
Experiments in rats revealed that the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) given in multiple daily doses either per os (p.o.) or subcutaneously (s.c.) induced in a dose-dependent manner solitary or double ("kissing") duodenal ulcers in the rat. MPTP also diminished cerebral concentrations of DOPAC and the duodenal ulcers were prevented by pretreatment with dopamine agonists (e.g., bromocriptine, lergotrile) or monoamine oxidase inhibitors (e.g., pargyline, 1-deprenyl). High doses of MPTP also caused gastric erosions and motility changes resembling parkinsonism (e.g., akinesia, rigidity, forward bending of trunk). This chemical decreased gastric secretion of acid and pepsin, as well as pancreatic bicarbonate, trypsin and amylase. Thus, MPTP causes duodenal ulcers that are possibly associated with impaired defense in the duodenal bulb (e.g., decreased availability of duodenal and pancreatic bicarbonate). 相似文献
9.
The role of fatty acid metabolism in chemical-dependent cell injury is poorly understood. Addition of L-carnitine to the incubation medium of cultured hepatocytes delayed cell killing initiated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Protection by L-carnitine was stereospecific and observed as late as 1 h following addition of MPTP. D-Carnitine, but not iodoacetate, reversed the L-carnitine effect. Monoamine oxidase A and B activities, MPTP/N-methyl-4-phenyl-pyridinium levels, and MPTP-dependent loss of mitochondrial membrane potential measured by release of [3H]triphenylmethylphosphonium were not altered by addition of L-carnitine. Significant changes in MPTP-induced depletion of total cellular ATP did not occur with excess L-carnitine. Although the mechanism of cytoprotection exerted by L-carnitine remains unresolved, the data suggest that L-carnitine does not significantly alter: (i) mitochondrial-dependent bioactivation of MPTP; (ii) MPTP-dependent loss of mitochondrial membrane potential; or (iii) MPTP-mediated depletion of total cellular ATP content. We conclude that alterations of fatty acid metabolism may contribute to the toxic consequences of exposure to MPTP. Moreover, the lack of L-carnitine-mediated cytoprotection of monolayers incubated with 4-phenylpyridine or potassium cyanide suggests: (i) a link between fatty acid metabolism and mitochondrial membrane-mediated, bioactivation-dependent cell killing; and (ii) that inhibition of NADH dehydrogenase may not totally explain the mechanism of MPTP cytotoxicity. 相似文献
10.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces parkinsonism in human and non-human primates. Its mechanism of action is not fully elucidated.Recently, the participation of trace metals, such as manganese, on its neurotoxic action has been postulatted. In this work, we studied the effect of manganese administration on the neurochemical consequences of MPTP neurotoxic action. Male Swiss albino mice were treated with manganese chloride (MnCl2 ·4H2O; 0.5 mg/ml or 1.0 mg/ml of drinking water) for 7 days, followed by three MPTP administrations (30 mg/Kg, intraperitoneally). Seven days after the last MPTP administration, mice were sacrificed and dopamine and homovanillic acid contents in corpus striatum were analyzed. Striatal concentration of dopamine was found increased by 60% in mice pretreated with 0.5 mg/ml and 52% in the group treated of 1.0 mg/ml as compared versus animals treated with MPTP only. Hornovanillic acid content in both groups treated with manganese was the same as those in control animals. The results indicate that manganese may interact with MPTP, producing an enhancement of striatal dopamine turnover, as the protective effect of manganese was more pronounced in the metabolite than in the neurotransmitter. 相似文献
11.
12.
Oxidation and enzyme-activated irreversible inhibition of rat liver monoamine oxidase-B by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 总被引:1,自引:1,他引:1 下载免费PDF全文
The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces symptoms resembling Parkinson's disease in humans, acts both as a substrate and an enzyme-activated irreversible inhibitor of the B-form of monoamine oxidase from rat liver. Analysis of the inhibitory process showed the compound to be considerably more efficient as a substrate than as an irreversible inhibitor, with about 17000 mol of product being formed per mol of enzyme inactivated. The half-time of the inhibitory process was about 22 min. With the A-form of the enzyme, the compound had a lower Km value and a considerably lower maximum velocity than the corresponding values obtained with the B-form. Under the conditions used in the present work the inhibition of the A-form of the enzyme was largely reversible. 相似文献
13.
Oxidative stress and covalent binding have been proposed as possible mechanisms involved in the cytotoxic effects of the parkinsonism-causing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the toxicity induced by MPTP in isolated rat hepatocytes seems to be relatively independent of oxygen radical-induced oxidative stress. Here we demonstrate that MPTP cytotoxicity is not potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase, nor prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) or the iron-chelating agent desferrioxamine. Moreover, preincubation of hepatocytes with diethylmaleate to lower the level of intracellular reduced glutathione (to 20% of the initial value) did not affect either the rate or extent of MPTP cytotoxicity. Thus, nucleophilic soluble thiols do not seem to play a protective role against MPTP-induced cell damage, in contrast to what one would have expected if covalent protein binding and oxidative stress were involved as toxic mechanisms. On the other hand, MPTP cytotoxicity was potentiated by pretreatment of hepatocytes with cytochrome P-450 inhibitors (e.g., SKF 525A and metyrapone) and a more rapid depletion of ATP was observed in these experimental conditions. We conclude that mitochondrial damage and subsequent ATP depletion are likely to play a critical role in the toxicity of MPTP to isolated hepatocytes and that the metabolism of MPTP via the cytochrome P-450 monooxygenase system can be considered to be a detoxifying pathway. 相似文献
14.
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated. 相似文献
15.
Monoamine oxidase (MAO) B is a mitochondrial enzyme selectively involved in the oxidative activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to toxic pyridinium cations producing Parkinsonism in animal models. Various synthesized 5-nitroindazoles, 6-nitroindazole and the neuroprotectant 7-nitroindazole were examined as inhibitors of MAO and as antioxidants and radical scavengers. The oxidation of MPTP by human MAO-B and mitochondria was assessed by HPLC. Simple nitroindazoles inhibited MPTP oxidation to 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) and 1-methyl-4-phenylpyridinium (MPP+) in a competitive and reversible manner. 5-Nitroindazole (IC50=0.99 µM, Ki=0.102 µM) and 6-nitroindazole (IC50=2.5 µM) were better inhibitors of human MAO-B than 7-nitroindazole (IC50=27.8 µM). 6-Nitroindazole also inhibited MAO-A. Nitroindazole isomers were good hydroxyl radical (OH?) scavengers, with 5-nitro-, 6-nitro- and 7-nitroindazole showing similar activity (k ~1010 M?1 s?1). Neuroprotective actions of nitroindazoles (7-nitroindazole) could be linked to their MAO-inhibitory and antiradical properties besides inhibition on nitric oxide synthase (NOS). 5-Nitro- and 6-nitroindazole, previously reported as weak NOS inhibitors, were better inhibitors of human MAO-B and more active against MPTP neurotoxin oxidation (lower MPDP+ and MPP+ levels) than 7-nitroindazole and acted as good radical scavengers and could be potential neuroprotective agents in addition to MAO-B inhibitors. 相似文献
16.
Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 总被引:4,自引:0,他引:4
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug. 相似文献
17.
G E Kass J M Wright P Nicotera S Orrenius 《Archives of biochemistry and biophysics》1988,260(2):789-797
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes. 相似文献
18.
Studies on the mechanism of action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 总被引:2,自引:0,他引:2
Explants of embryonic rat substantia nigra in organotypic culture are sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at concentrations approximating the doses given in vivo to monkeys. Fluorescence microscopy and 3H-dopamine uptake measurements reveal that the toxicity is selective for dopamine neurons, whereas other neurons and cells in the culture appear normal by phase contrast microscopy. Reduced MPTP (piperidine analog) is inactive in the tissue culture model, while fully oxidized MPTP (pyridinium analog) destroys dopamine neurons. Pargyline and deprenyl, two monoamine oxidase inhibitors, inhibit the neurotoxic action of MPTP. Pargyline and deprenyl also protect monkeys in vivo. The results implicate monoamine oxidase in the mechanism of action of MPTP. Two possible mechanisms for protection by monoamine oxidase are discussed. 相似文献
19.
Parkinson disease (PD) involves the specific degeneration of dopaminergic neurons of the pars compacta of the substantia nigra. Although the cause of the degeneration of nigrostriatal dopaminergic neurons in PD is unknown, there is significant evidence to suggest that oxidative stress may be involved in this process. This review specifically examines the current status of evidence suggesting iron may contribute to oxidative damage associated with PD. 相似文献
20.
A Barbeau L Dallaire N T Buu F Veilleux H Boyer L E de Lanney I Irwin E B Langston J W Langston 《Life sciences》1985,36(11):1125-1134
We report the development of two animal models in amphibians (frogs and salamanders) in whom 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces the behavioral (neurological) and biochemical equivalents of the human disease and, in addition, a measurable modification in at least one form of pigment-bearing cell from the neural crest, the skin melanocyte. We propose that this new approach can become an inexpensive, easily quantifiable model for the study of the effect of MPTP on the central and peripheral nervous systems. We also demonstrate that the toxic effect of MPTP can be completely abolished in vivo by treatment with a monoamine oxidase inhibitor and potentiated by an inhibitor of catechol-O-methyltransferase. MPTP is catabolised by oxidation into toxic metabolites, but 1-methyl-4-phenylpyridinium ion (MPP+), the proposed end-metabolite, is even more toxic than MPTP in this model, possibly through a different mechanism. 相似文献