首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pyrroline 5-carboxylate, a naturally occurring intermediate, is a potent activator of redox-dependent metabolic pathways. This effect of pyrroline 5-carboxylate is due, at least in part, to the special mechanism mediating its entry into cells. Using Chinese hamster ovary cells we recently characterized the cellular uptake of pyrroline 5-carboxylate as a process transferring oxidizing potentialpari passu with cell entry, a process consistent with group translocation. We sought to identify specific inhibitors to probe this unique uptake mechanism, to blockade the metabolic effects of pyrroline 5-carboxylate, and to provide strategies to identify the putative carrier protein. Because pyrroline 5-carboxylate, a ring structure with a tertiary nitrogen, is in spontaneous equilibrium with glutamic--semialdehyde, an openchain structure, we tested analogues of both. Most open-chain aldehydes at 10mm had little effect on the uptake of pyrroline 5-carboxylate. Although succinic semialdehyde did inhibit, its effect was nonspecific in that the uptake of (methylamino) isobutyric acid was inhibited as much as the uptake of pyrroline 5-carboxylate. In contrast, pyrroline 2-carboxylate and other cyclic compounds with teriary nitrogens, e.g., pyridines, were specific inhibitors of pyrroline 5-carboxylate uptake. Respective potencies of pyridine derivatives depended on the nature and location of constituent groups. Kinetics studies showed that these inhibitors were competitive with pyrroline 5-carboxylate and the most potent inhibitor, 2,6-pyridinedicarboxaldehyde, exhibited aK 12 of 0.27±0.05mm. In the face of their effect on P5C uptake, the most potent of thse analogues, 2-pyridinecarboxaldehyde and 2,6-pyridinedicarboxaldehyde, did not inhibit the activity of pyrroline 5-carboxylate to proline. Nevertheless, the analogues markedly inhibited the stimulatory effect of P5C on the pentose phosphate shunt. Importantly, not only did 2-pyridinecarboxaldehyde protect the pyrroline 5-carboxylate uptake mechanism from the inhibitory effects of a sulfhydryl-reactive agent, but also its inhibitory effect became irreversible in the presence of sodium cyanoborohydride. These inhibitors may help discriminate events mediated by the transport carrier from those mediated by intracellular metabolism and may provide a method for identifying and characterizing the putative carrier for P5C.  相似文献   

2.
We have investigated the effects of insulin and somatomedin-C/insulinlike growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 micrograms/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolin was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. This effect of both peptides was dose dependent with an ED50 of about 1 ng/ml and 5 ng/ml for SM-C and insulin, respectively. Insulin and Sm-C had no additive effect on these parameters. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 micrograms/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated [3H]-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through their own receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.  相似文献   

3.
《Endocrine practice》2010,16(5):864-873
ObjectiveTo review the epidemiologic studies that describe the relationships among diabetes, obesity, and cancer; animal studies that have helped to decipher the mechanisms of cancer development; and some of the therapeutic targets undergoing investigation.MethodsAn electronic search was performed of Medline, Scopus, Google Scholar, and ClinicalTrials.gov to identify English-language articles and studies published from 1995 through 2010 relating to obesity, insulin, insulinlike growth factors, diabetes mellitus, and cancer.ResultsEpidemiologic studies have reported that diabetes and obesity are linked to an increased risk of certain cancers in association with higher levels of insulin, C-peptide, and insulinlike growth factor 1. Animal models have demonstrated that increased insulin, insulinlike growth factor 1, and insulinlike growth factor 2 signaling can enhance tumor growth, while inhibiting this signaling can reduce tumorigenesis. Therapies that target insulin and insulinlike growth factor 1 signaling pathways have been developed and are currently in clinical trials to treat cancer.ConclusionsInsulin, insulinlike growth factor 1, and insulinlike growth factor 2 signaling through the insulin receptor and the insulinlike growth factor 1 receptor can induce tumorigenesis, accounting to some extent for the link between diabetes, obesity, and cancer. Knowledge of these pathways has enhanced our understanding of tumor development and allowed for the discovery of novel cancer treatments. (Endocr Pract. 2010;16:864-873)  相似文献   

4.
Recent studies have shown that pyrroline 5-carboxylate, the intermediate in the interconversions of proline, ornithine, and glutamate, can regulate the metabolism of erythrocytes. We now report that the formation of 5-phosphoribosyl 1-pyrophosphate (PP-Rib-P) was markedly stimulated by pyrroline 5-carboxylate in intact red cells. The production of PP-Rib-P is an important point of regulation in nucleotide metabolism. We found that pyrroline 5-carboxylate increased glucose metabolism through the oxidative arm of the pentose shunt, ribose 5-phosphate formation, and PP-Rib-P production and subsequently augmented purine nucleotide production through the salvage pathway in erythrocytes. We now report that pyrroline 5-carboxylate markedly stimulated the net synthesis of inosine monophosphate from hypoxanthine in intact human red cells so that the pool of inosine monophosphate became 20-30% of the total pool of purine nucleotides. Inosine monophosphate has been considered to be a "mobile pool" of purines, i.e. a reservoir from which peripheral tissues can be supplied; the effect of pyrroline 5-carboxylate on the inosine monophosphate pool may be a mechanism for regulating the function of erythrocytes in purine delivery.  相似文献   

5.
When grown in the presence of serum with added insulin, Chinese hamster embryonic fibroblasts (CHEF/18) cells can be induced to become preadipocytes that are committed to the adipocyte pathway of terminal differentiation (Sager, R., and P. Kovac, 1982, Proc. Natl. Acad. Sci. USA, 79:480-484). We found that commitment to the adipocyte pathway, as well as terminal differentiation to form mature adipocytes, can occur in a defined serum-free medium containing insulin. When CHEF/18 cells are plated in serum-containing medium, only 5-10% of cells in each colony undergo terminal differentiation, whereas in serum-free medium, greater than 90% of the cells became adipocytes. These and other results show that CHEF/18 cells require no adipogenic factors in addition to insulin and the other components of the serum-free medium (transferrin, epithelial growth factor, thrombin) to form adipocytes, and furthermore, that serum inhibits the rate of terminal adipocyte differentiation of these cells. As little as 10 ng/ml insulin added to serum-containing medium can induce adipogenesis, suggesting that insulin rather than an insulinlike growth factor is the active agent. The results further demonstrate that virtually every CHEF/18 cell can be induced into the adipocyte pathway.  相似文献   

6.
Although much is known about the structure of ras-encoded proteins, little is known about how expression is regulated. In serum-stimulated murine fibroblasts, c-ras-Ha mRNA levels fluctuated with the growth state but not with the position in the cell cycle. Two types of growth factors regulated c-ras-Ha expression: insulin (IN) or insulinlike growth factor I, each apparently acting through its cognate receptor, and epidermal growth factor (EGF). In quiescent cells, IN or insulinlike growth factor I induced c-ras-Ha mRNA three- to fivefold within 4 h, but thereafter the mRNA declined. By contrast, EGF had little effect in 4 h but induced the mRNA after 4 to 6 h. When quiescent cells were given serum or IN and EGF simultaneously, c-ras-Ha mRNA rose steadily, beginning 1 to 2 h after stimulation, and reached a stable five- to sevenfold elevation in 16 h. Thus, c-ras-Ha gene expression was sequentially regulated by two growth factors, one of which (IN) does not induce expression of other growth-regulated protooncogenes. A transformed derivative cell line that does not require IN for G1 progression has lost early IN-dependent but not late serum-dependent regulation. The results support the possibility that c-ras-Ha and IN action are functionally linked.  相似文献   

7.
Summary Growth factors are known to play important roles in cellular proliferation and differentiation. However, little information is available concerning their roles in the earliest stages of mammalian development. The effect of physiologic levels of insulin, insulinlike growth factor-I, and insulinlike growth factor II (IGF-I and-II) on DNA, RNA, and protein synthesis in preimplantation stages of the mouse are described in this study. Quantitative studies of the incorporation of labeled thymidine, uridine, and methionine into trichloroacetic acid-insoluble material by different developmental stages of preimplantation mouse embryos labeled in vitro, indicate that physiologic levels of insulin stimulated DNA, RNA, and protein synthesis with significant effects observed first at the morula stage of development. In contrast, neither IGF-I nor IGF-II stimulated DNA, RNA, or protein synthesis to a significant degree under the same experimental conditions. These results suggest a functional role for insulin at the earliest stages of mammalian embryogenesis. This work was supported by grant HD 23511 from the National Institutes of Health, Bethesda, MD.  相似文献   

8.
9.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

10.
Summary The ability of the murine mammary fat pad to directly stimulate the growth of mammary epithelial cells and to modulate the effects of various mammogenic agents has been investigated in a newly described, hormone- and serum-free coculture system. COMMA-1D mouse mammary epithelial cells were cultured for 5 or 7 d with various supplements in the absence or presence of epithelium-free mammary fat pad explants from virgin female BALB/c mice. Cocultured fat pad stimulated increases in the DNA content of COMMA-1D cultures by two- to threefold or six-to eightfold after 5 or 7 d, respectively. The mitogenic effect was additive to that of 10% fetal calf serum and could not be attributed to the release of prostaglandin E2 or synthesis of prostaglandins by epithelial cells. In addition, bovine serum albumin attenuated (P<0.05) the mitogenic effect of cocultured mammary fat pad. Added alone, insulinlike growth factor-I, epidermal growth factor, and insulin increased (P<0.05) total DNA of COMMA-1D cultures by 2.5-, 3.7-, and 2.3-fold, respectively. Cocultured mammary fat pad markedly interacted (P<0.01) with these mitogens to yield final DNA values that were 21.2-, 13.3-, and 22.1-fold greater than in basal medium only. Associated with this proliferation was the formation of numerous domes above the COMMA-1D monolayer. There was no proliferative response to growth hormone or prolactin in the absence or presence of cocultured fat pad (P>0.05). Whereas hydrocortisone did not alter cell number, it attenuated (P<0.05) the mitogenic effect of cocultured mammary fat pad. These results indicate that the murine mammary fat pad is not only a direct source of mitogenic activity, but also modulates the response of mammary epithelial cells to certain mammogens.  相似文献   

11.
The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells attached, spread out, and proliferated into monolayers mainly consisting of insulin-containing cells. The number of beta-cells in S-phase was increased from 0.9-6.5% as determined by immunochemical staining of bromodeoxyuridine incorporated into insulin-positive cells. The increase in cell number was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin. It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell.  相似文献   

12.
An insulinlike peptide (ILAs) has been isolated in our laboratory from human serum. The binding of 123I-labeled ILAs was studied in subcellular fractions from rat liver and found to be much greater in microsomes than purified plasmalemma. The high level of microsomal binding was due to a particular enrichment of binding sites in Golgi elements. Binding to Golgi was time and temperature dependent and was augmented by an increase of either subcellular fraction or 125I-labeled ILAs in accordance with a mass action process. Degradation of 125I-labeled ILAs was greatest in the Golgi vesicle fraction and was reduced by incubation at 4 degrees C. Bound 125I-labeled ILAs could be eluted and was found to retain integrity. Binding was pH dependent with a broad optimum at pH 7.7-8.5. Dissociation of bound 125I-labeled ILAs was time and temperature dependent. It was greater at 37 than 4 degrees C, and was uninfluenced by unlabeled ILAs. The ILAs receptor was stable at 4 degrees C but was markedly decreased by preincubation at 37 degrees C. The binding of 125I-labeled ILAs was inhibited by unlabeled ILAs and related insulinlike peptides (the insulinlike growth factors, IGF-1 and IGF-2) in a dose-dependent manner. Insulin and its analogues had only a partially inhibitory effect, and structurally unrelated peptides were without inhibitory efficacy. In contrast ILAs and IGF-1 and IGF-2 inhibited 125I-labeled insulin binding to its receptors in a dose-dependent fashion. These observations identify a receptor for insulinlike peptides in the Golgi elements of rat liver. It is distinct from the insulin receptor previously observed in these elements. The dual interaction of ILAs and other insulinlike peptides with both the insulin receptor and their own unique receptor constitutes the presumed biochemical basis for the two types of action effected by this family of peptides, namely, an effect on metabolism comparable to insulin and an effect on cellular anabolism and growth.  相似文献   

13.
14.
15.
Summary Biosynthetic human epidermal growth factor (Bh-EGF) induced dose-dependent synthesis and secretion of neutral mucin glycoprotein when the fundal cells isolated from rabbit stomach were cultured in serum-free medium containing Bh-EGF at concentrations as high as 10 to 100 ng/ml. At these high concentrations, Bh-EGF had no effect on the cell growth. In marked contrast, much lower concentrations from 0.1 to 1.0 ng/ml of Bh-EGF failed to stimulate mucin synthesis, but enhanced proliferation of the cells. Electrophoretic pattern of the mucin secreted from the cultured mucosal cells was very similar to that of the authentic mucin obtained from rabbit stomach. Maximal secretion of the mucin from the cells was observed at Hour 96 of the culture. Although fetal bovine serum (5%) and insulin (0.5 μg/ml) also stimulated the mucosal cells, both in growth and in mucin synthesis and release, the enhancing activity of the mucin synthesized and released by Bh-EGF at a concentration of 100 ng/ml per microgram DNA of cultured cells was far superior to that of 5% fetal bovine serum and 0.5 μg/ml insulin.  相似文献   

16.
BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells.  相似文献   

17.
Insulin was observed to modulate the growth and the phosphoenolpyruvate carboxykinase (PEPCK) activity of primary cultures of rabbit renal proximal tubule cells in serum free medium. Insulin was stimulatory to primary proximal tubule cell growth at a concentration of 10(-8) M. In contrast, insulin was inhibitory to a proximal tubule function, PEPCK activity, following a 5-minute incubation period. An insulin dosage as low as 10(-10) M was inhibitory to PEPCK activity, suggesting the involvement of insulin receptors. Although insulin was required at a significantly higher dosage to stimulate the growth of the primary renal proximal tubule cells than to inhibit PEPCK activity, the elevated dosage required in order to observe a growth effect may be explained by the degradation of insulin by the primary renal proximal tubule cells. However the possible involvement of receptors for Insulin-like Growth Factor I (IGF-I) and Insulin-like Growth Factor II (IGF-II) in mediating the effects of insulin cannot be excluded. Other effector molecules were also examined with respect to their effects on PEPCK activity. The possible involvement of cyclic AMP in the control of the PEPCK activity of the primary renal cells was indicated by the stimulatory effects of 8 bromocyclic AMP, isobutyl methylxanthine (a cyclic AMP phosphodiesterase inhibitor), and forskolin (an activator of adenylate cyclase). Phorbol 12-myristate 13-acetate (TPA), which activates protein kinase C, was inhibitory. The actions of these effector molecules and insulin on the PEPCK activity of the primary renal cultures are remarkably similar to their effects on hepatic PEPCK. Several growth factors, fibroblast growth factor (FGF), and transforming growth factor beta (TGF beta) were also examined. FGF was observed to be stimulatory, whereas TGF beta was inhibitory to the PEPCK activity of the primary renal proximal tubule cells.  相似文献   

18.
The interconversions of proline and 1-pyrroline-5-carboxylate form an intercellular cycle that is the basis of a metabolic interaction between hepatocytes and erythrocytes. The cycle transfers oxidizing potential from hepatocytes to erythrocytes, which stimulates pentose phosphate pathway in erythrocytes. This interaction depends on the differential metabolism of proline and 1-pyrroline-5-carboxylate in erythrocytes and hepatocytes and consists of the following: in hepatocytes proline oxidase converts proline into 1-pyrroline-5-carboxylate, which is released into the medium and taken up by erythrocytes; erythrocyte 1-pyrroline-5-carboxylate reductase converts 1-pyrroline-5-carboxylate into proline and concomitantly generates NADP+; the generated oxidizing potential drives glucose metabolism through the pentose phosphate pathway in erythrocytes; finally, erythrocytes release proline into the medium, enabling it to re-enter hepatocytes and repeat the cycle. The increased activity of the pentose phosphate pathway in erythrocytes may enhance the production of 5-phosphoribosyl pyrophosphate, a necessary moiety for the processing of purines.  相似文献   

19.
MCF-7 cells were grown in serum free medium (Dulbecco MEM without phenol red, supplemented with Costar SF-1 without insulin). Insulin was added as required and gave dose dependent growth stimulation at concentrations between 5 and 10,000 nM. Identical growth response curves were obtained for thymidine uptake and cell number. Oestradiol and insulin-like growth factor I (IGF-I) added individually both gave a dose dependent stimulation of cell growth in serum free medium containing 50 nM insulin. The growth stimulatory effect of oestradiol was to a large extent inhibited with suramine, a general inhibitor of growth factors, indicating that the effect of oestradiol was mediated through stimulating autocrine secretion of a growth factor.

To investigate a possible link between the effects of oestradiol and IGF-I, a specific IGF-I receptor antibody (IR-3), 10 μg/ml was used. These experiments were carried out with 2.5 nM insulin in the medium, a concentration at which insulin had no growth stimulatory effect. Stimulation was carried out for 18 h before assay of thymidine uptake. The effect of oestradiol was not significantly reduced by IR-3, indicating that IGF-I was not an autocrine mediator of oestradiol stimulation of cell growth under these conditions, whereas IR-3 extensively reduced growth stimulation by IGF-I. On long term stimulation (5 days) oestradiol had a marked stimulatory effect on cell number and IR-3 almost totally abrogated this effect. When oestradiol (1 nM) and IFG-I (2.5 nM) were added together, the combined effect on thymidine incorporation and cell number was significantly greater than additive. This synergistic effect on the IGF-I growth response was totally abolished by the IGF-I receptor antibody. The results suggest a cooperative interaction of oestradiol and IGF-I. It is concluded that growth stimulation of MCF-7 cells by long term treatment with oestradiol may be mediated through autocrine secretion of IGF-I.

The effect of short term stimulation of thymidine incorporation suggest that the growth response of oestradiol is more complex, and indicate that a cooperative interaction with IGF-I is involved, which is unrelated to stimulated autocrine secretion.  相似文献   


20.
Three-dimensional models for human insulinlike growth factors (IGF-I and IGF-II) have been constructed by using interactive molecular graphics. It is suggested that the two growth factors have structures in which the A and B chains and the hydrophobic cores are identical to those of insulin. The conformations of the connecting peptides and COOH-terminal extensions are predicted by statistical methods but the structures are limited by the constraints implied by the insulinlike part. The models explain the nonsuppressibility by anti-insulin antibodies of the IGFs and show that part of the insulin receptor-binding region is conserved, which explains the growth factors' ability to bind insulin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号