首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary capillary perfusion within a single alveolar wall continually switches among segments, even when large-vessel hemodynamics are constant. The mechanism is unknown. We hypothesize that the continually varying size of plasma gaps between individual red blood cells affects the likelihood of capillary segment closure and the probability of cells changing directions at the next capillary junction. We assumed that an increase in hematocrit would decrease the average distance between red blood cells, thereby decreasing the switching at each capillary junction. To test this idea, we observed 26 individual alveolar capillary networks by using videomicroscopy of excised canine lung lobes that were perfused first at normal hematocrit (31-43%) and then at increased hematocrit (51-62%). The number of switches decreased by 38% during increased hematocrit (P < 0.01). These results support the idea that a substantial part of flow switching among pulmonary capillaries is caused by the particulate nature of blood passing through a complex network of tubes with continuously varying hematocrit.  相似文献   

2.
To gain insight into the changes occurring in alveolar vessels when alveolar pressure exceeds venous pressure at the downstream end of the alveolar vessels (zone 2), we compared the uptake of serotonin and the extravascular volume accessible to 3HOH (Qev) under zone 2 and 3 conditions in isolated dog lung lobes. We also examined the influence of occluding some of the small pulmonary arteries with 58- to 548-micron-diam beads on the serotonin uptake and Qev. We found that, with the bead embolization, both the serotonin uptake and the Qev were reduced, whereas the change from zone 3 to 2 reduced serotonin uptake but did not change Qev. A plausible explanation for these observations is that the beads occluded vessels that were relatively large compared with those in which significant transvascular 3HOH exchange and serotonin uptake take place. Perfusion ceased in the collection of capillaries normally served by the obstructed arteries. Thus the extravascular water and the serotonin uptake sites downstream from the obstructions were not accessible to the indicators during the short time interval of the indicator passage through the lung. On the other hand, the change from zone 3 to zone 2 resulted in the collapse of small individual capillary segments within the alveolar vessel bed. Since the serotonin does not readily diffuse from the vessels through the tissue, it could not reach the endothelial cells of the collapsed capillaries. However, since the distances for diffusion between collapsed capillaries and neighboring perfused capillaries were small, the more highly diffusible 3HOH had access to the same Qev under both zone 2 and 3 conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hanger, Christopher C., Robert G. Presson, Jr., Osamu Okada,Steven J. Janke, John J. Watkins, Wiltz W. Wagner, Jr., and Ronald L. Capen. Computer determination of perfusion patterns in pulmonarycapillary networks. J. Appl. Physiol.82(4): 1283-1289, 1997.Individual pulmonary capillaries are notsteadily perfused. By using in vivo microscopy, it can readily bedemonstrated that perfusion continually switches between capillarysegments and between portions of the network within a single alveolarwall. These changes in capillary perfusion occur even when upstream pressure and flow are constant. Flow switching between capillary segments in the absence of hemodynamic changes in large upstream vessels suggests that capillary perfusion patterns could be random. Tocalculate the probability that perfusion patterns could occur bychance, it is necessary to know the total number of possible perfusionpatterns in a given capillary network. We developed a computer programthat can determine every possible perfusion pattern for any givencapillary network, and from that information we can calculate whetherperfusion of individual segments in the network is random. With theresults of the computer program, we have obtained statistical evidencethat some capillary segments in a network are nonrandomly perfused.

  相似文献   

4.
Perfusion of the pulmonary acinus has been shown to be generally homogeneous, but there is a significant component that is heterogeneous. To investigate the contribution of the alveolar septal capillary network to acinar perfusion heterogeneity, the passage of fluorescent dye boluses through the subpleural microcirculation of isolated dog lung lobes was videotaped using fluorescence microscopy. As the videotapes were replayed, dye-dilution curves were recorded from each of the tributary branches of Y-shaped venules that drained single acini. For each Y-shaped venule, the mean appearance time difference between the pair of tributary branches was calculated from the dye curves. When the complex septal capillary networks were derecruited by high positive airway pressure, venular perfusion became proportionally more homogeneous. This result shows that septal capillary resistance and pathlength differences are important contributors to intra-acinar perfusion heterogeneity.  相似文献   

5.
The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial mismatch between the functional units of muscle activation and capillary perfusion. Diffusive oxygen transport was simulated in cross sections of skeletal muscle, including several MVUs and fibers from several motor units. Four alternative hypothetical mechanisms controlling capillary perfusion were considered. First, all capillaries adjacent to active fibers are perfused. Second, all MVUs containing capillaries adjacent to active fibers are perfused. Third, each MVU is perfused whenever oxygen levels at its feed arteriole fall below a threshold value. Fourth, each MVU is perfused whenever the average oxygen level at its capillaries falls below a threshold value. For each mechanism, the dependence of the fraction of perfused capillaries on the level of muscle activation was predicted. Comparison of the results led to the following conclusions. Control of perfusion by MVUs increases the fraction of perfused capillaries relative to control by individual capillaries. Control by arteriolar oxygen sensing leads to poor control of tissue oxygenation at high levels of muscle activation. Control of MVU perfusion by capillary oxygen sensing permits adequate tissue oxygenation over the full range of activation without resulting in perfusion of all MVUs containing capillaries adjacent to active fibers.  相似文献   

6.
The key determinants of alveolar capillary perfusion are transit times and the extent of recruitment. Capillaries are known to be heavily recruited in the dependent lung, but there are no direct data that bear on how capillary transit times might be affected by gravity. We directly determined mean capillary transit times on the surface of the upper, middle, and lower lung by measuring the passage of fluorescent dye through the capillaries using in vivo television microscopy. In anesthetized dogs, mean capillary transit times averaged 12.3 s in the upper lung, 3.1 s in the midlung, and 1.6 s in the lower lung. This near order of magnitude variation in speed of blood transit establishes that there is a vertical gradient of capillary transit times in the lung. As expected, dependent capillary networks were nearly fully recruited, whereas relatively few capillaries were perfused in the upper lung. The lengthy transit times and sparsely perfused capillary beds in the upper lung combine to provide a substantial part of pulmonary gas exchange reserve.  相似文献   

7.
Capillaries recruit when pulmonary arterial pressure rises. The duration of increased pressure imposed in such experiments is usually on the order of minutes, although recent work shows that the recruitment response can occur in <4 s. In the present study, we investigate whether the brief pressure rise during cardiac systole can also cause recruitment and whether the recruitment is maintained during diastole. To study these basic aspects of pulmonary capillary hemodynamics, isolated dog lungs were pump perfused alternately by steady flow and pulsatile flow with the mean arterial and left atrial pressures held constant. Several direct measurements of capillary recruitment were made with videomicroscopy. The total number and total length of perfused capillaries increased significantly during pulsatile flow by 94 and 105%, respectively. Of the newly recruited capillaries, 92% were perfused by red blood cells throughout the pulsatile cycle. These data provide the first direct account of how the pulmonary capillaries respond to pulsatile flow by showing that capillaries are recruited during the systolic pulse and that, once open, the capillaries remain open throughout the pulsatile cycle.  相似文献   

8.
Systemic parameters and microvascular and capillary hemodynamics were studied in the hamster window chamber model before and after hyaluronan degradation by intravenous injection of Streptomyces hyaluronidase (100 units, 40-50 U/ml plasma). Glycocalyx permeation was estimated using fluorescent markers of different molecular size (40, 70, and 2,000 kDa), and electrical charge. Systemic parameters (blood pressure, heart rate, blood gases) and microhemodynamics (vascular tone, velocity, and blood flow) remained statistically unchanged after injection of hyaluronidase, compared with inactivated hyaluronidase. Conversely, capillary hemodynamics were drastically affected. Functional capillary density, the capillaries perfused with red blood cells (RBCs), decreased by 35%, capillary Hct of the remaining functional capillaries increased from 16 to 27%, and penetration of 70-kDa fluorescent marker increased. Furthermore, plasma-only perfused capillaries statistically increased 30 min after hyaluronidase. The decrease in functional capillary density accounted for an increased RBC flux in the remainder of the capillaries, since the same number of RBCs had to traverse a reduced number of capillaries. Flux balances showed a reduction from baseline of 11% for the RBC flux and 20% for the plasma flux after treatment. These discrepancies are within the margin of error of the techniques used and could be explained by accounting for RBC over-velocity compared with plasma. These findings suggest that the decrease in the glycocalyx leads to capillary perfusion impairments.  相似文献   

9.
To study the effect of hypoxia on the pulmonary capillaries, windows were inserted in the chest wall of 9 pentobarbital-anesthetized dogs. A microscope with an image-superimposing device was used to make drawings of the perfused capillaries. Summed lengths of individual perfused capillaries in the drawing were determined with a map-measuring tool. Total capillary length was constant between PaO2 of 160 and 70 Torr. As PaO2 fell below 70 Torr, recruitment of previously unperfused capillaries occurred in every case; at PaO2 of 40 Torr, the total length of perfused capillaries was about 4 times greater than during normoxia. There was no correlation between the recruitment of capillaries and alterations in left atrial pressure, only a weak correlation with cardiac output changes, but a very strong correlation with increased pulmonary artery pressure. This implies that recruitment was probably caused by vasoconstriction within the lung.  相似文献   

10.
Capillary recruitment and transit time in the rat lung   总被引:1,自引:0,他引:1  
Presson, Robert G., Jr., Thomas M. Todoran, Bracken J. DeWitt, Ivan F. McMurtry, and Wiltz W. Wagner, Jr.Capillary recruitment and transit time in the rat lung.J. Appl. Physiol. 83(2): 543-549, 1997.Increasing pulmonary blood flow and the associated rise incapillary perfusion pressure cause capillary recruitment. The resultingincrease in capillary volume limits the decrease in capillary transittime. We hypothesize that small species with relatively high restingmetabolic rates are more likely to utilize a larger fraction ofgas-exchange reserve at rest. Without reserve, we anticipate thatcapillary transit time will decrease rapidly as pulmonary blood flowrises. To test this hypothesis, we measured capillary recruitment andtransit time in isolated rat lungs. As flow increased, transit timedecreased, and capillaries were recruited. The decrease in transit timewas limited by an increase in the homogeneity of the transit time distribution and an increased capillary volume due, in part, to recruitment. The recruitable capillaries, however, were nearly completely perfused at flow rates and pressures that were less thanbasal for the intact animal. This suggests that a limited reserve ofrecruitable capillaries in the lungs of species with high restingmetabolic rates may contribute to their inability to raiseO2 consumption manyfold abovebasal values.

  相似文献   

11.
Following ozone (O3) exposure, airways reactivity increases. We investigated the possibility that exposure to O3 causes a decrease in pulmonary perfusion, and that this decrease is associated with the increase in reactivity. Perfusion was measured with radiolabeled microspheres. A wedged bronchoscope was used to isolate sublobar segments in the middle and lower lobes of anesthetized dogs. Isolated segments were exposed to either O3 or an elevated alveolar pressure. Although increased alveolar pressure decreased microsphere density, exposure to 1 ppm O3 did not. Collateral system resistance rose significantly following exposure to O3 and to high pressure. These studies do not support the hypothesis that pulmonary perfusion is decreased following O3 exposure and is associated with subsequent increases in reactivity.  相似文献   

12.
Following completion of arterial repair in an experimental free-flap model, platelet emboli have been observed passing through the microcirculation downstream. The purpose of this experimental study was to observe and quantitate changes in capillary perfusion occurring subsequent to these events. The isolated rat cremaster model was used. For 6 hours subsequent to surgical injury of the main artery in this model, the number of emboli and the number of perfused capillaries downstream were counted. In eight rats having an intentional arterial wall injury, emboli were consistently seen during the first hour of reflow. In the nine control animals having no arterial injury, no emboli were seen. The presence of emboli in the cremaster muscle, resulting from the arterial injury, was associated with a significant reduction in the number of perfused capillaries. We suggest that the observed decrease in capillary perfusion was associated with microemboli that produced an adverse effect for several hours after their initial presence in the circulation.  相似文献   

13.
Effect of acetazolamide on cerebral blood flow and capillary patency.   总被引:2,自引:0,他引:2  
This study investigated the effects 2 h after administration of acetazolamide on cerebral blood flow and the pattern of cerebral capillary perfusion. Arterial blood pressure, heart rate, arterial blood gases, and pH were recorded in two groups of rats along with either regional cerebral blood flow or the percentage of capillary volume per cubic millimeter and number per square millimeter perfused as determined in cortical, thalamic, pontine, and medullary regions of the brain. Blood pressure, heart rate, and arterial PCO2 were not significantly different between the rats receiving acetazolamide (100 mg/kg) and the controls. Arterial blood pH was significantly lower in the acetazolamide rats. Blood flow increased significantly in the cortical (+ 102%), thalamic (+ 89%), and pontine (+ 88%) regions receiving acetazolamide. In control rats, approximately 60% of the capillaries were perfused in all of the examined regions. The percentage of capillaries per square millimeter perfused was significantly greater in the cortical (+ 52%), thalamic (+ 49%), and pontine (+ 47%) regions of acetazolamide rats compared with controls. In the medulla the increases in blood flow and percentage of capillaries perfused were not significant. Thus in the regions that acetazolamide increased cerebral blood flow, it also increased the percentage of capillaries perfused.  相似文献   

14.
The Laks catheter is a triple-lumen balloon catheter used to distend the canine main pulmonary artery while recording right ventricular pressure and the arterial pressure distal to the balloon. A rise in arterial pressure reported to occur during distension has been attributed to vasoconstriction rather than passive obstruction by the balloon. We tested this in six anesthetized dogs by inflating the Laks catheter-balloon while recording pressure distal to the balloon from the Laks catheter as well as from additional catheters in right and left pulmonary arteries placed retrogradely through lobar branches following thoracotomy. We found that balloon inflation increased pressures in the arterial port of the Laks catheter and in the left pulmonary artery catheter but reduced it in the right pulmonary artery. Tightening a snare around the right pulmonary artery had the same effects on pressures. Similar results were obtained while cardiac output was controlled by left ventricular bypass perfusion in four dogs. We conclude that the Laks catheter-balloon obstructs flow to the right lung and that the arterial pressure rise recorded in it during balloon inflation cannot be distinguished from that caused by occlusion of the right pulmonary artery.  相似文献   

15.
To determine how rapidly pulmonary capillaries recruit after sudden changes in blood flow, we used an isolated canine lung lobe perfused by two pumps running in parallel. When one pump was turned off, flow was rapidly halved; when it was turned on again, flow immediately doubled. We recorded pulmonary capillary recruitment in subpleural alveoli using videomicroscopy to measure how rapidly the capillaries reached a new steady state after these step changes in blood flow. When flow was doubled, capillary recruitment reached steady state in <4 s. When flow was halved, steady state was reached in approximately 8 s. We conclude that the pulmonary microcirculation responds rapidly to step changes in flow, even in the capillaries that are most distant from the hilum.  相似文献   

16.
Increasing the total surface area of the pulmonary blood-gas interface by capillary recruitment is an important factor in maintaining adequate oxygenation when metabolic demands increase. Capillaries are known to be recruited during conditions that raise pulmonary blood flow and pressure. To determine whether pulmonary arterioles and venules are part of the recruitment process, we made in vivo microscopic observations of the subpleural microcirculation (all vessels less than 100 microns) in the upper lung where blood flow is low (zone 2). To evoke recruitment, pulmonary arterial pressure was elevated either by an intravascular fluid load or by airway hypoxia. Of 209 arteriolar segments compared during low and high pulmonary arterial pressures, none recruited or derecruited. Elevated arterial pressure, however, did increase the number of perfused capillary segments by 96% with hypoxia and 165% with fluid load. Recruitment was essentially absent in venules (4 cases of recruitment in 289 segments as pressure was raised). These data support the concept that recruitment in the pulmonary circulation is exclusively a capillary event.  相似文献   

17.
Muscle fibers release K(+) into the interstitial space upon recruitment. Increased local interstitial K(+) concentration ([K(+)]) can cause dilation of terminal arterioles, leading to perfusion of downstream capillaries. The possibility that capillary perfusion can be regulated by vascular responses to [K(+)] was examined using a theoretical model. The model takes into account the spatial relationship between functional units of muscle fiber recruitment and capillary perfusion. Diffusion of K(+) in the interstitial space was simulated. Two hypothetical mechanisms for vascular sensing of interstitial [K(+)] were considered: direct sensing by arterioles and sensing by capillaries with stimulation of feeding arterioles via conducted responses. Control by arteriolar sensing led to poor tissue oxygenation at high levels of muscle activation. With control by capillary sensing, increases in perfusion matched increases in oxygen demand. The time course of perfusion after sudden muscle activation was considered. Predicted capillary perfusion increased rapidly within the first 5 s of muscle fiber activation. The reuptake of K(+) by muscle fibers had a minor effect on the increase of interstitial [K(+)]. Uptake by perfused capillaries was primarily responsible for limiting the increase in [K(+)] in the interstitial space at the onset of fiber activation. Vascular responses to increasing interstitial [K(+)] may contribute to the rapid increase in blood flow that is observed to occur after the onset of muscle contraction.  相似文献   

18.
Neutrophils are subjected to mechanical stimulation as they deform into the narrow capillary segments of the pulmonary microcirculation. The present study seeks to understand the changes in the cytoskeletal structure and the extent of biological activation as a result of this process. Neutrophils were passed through narrow polycarbonate filter pores under physiological driving pressures, fixed, and stained downstream to visualize the F-actin content and distribution. Below a threshold capillary size, the cell remodeled its cytoskeleton through initial F-actin depolymerization, followed by recovery and increase in F-actin content associated with formation of pseudopods. This rapid depolymerization and subsequent recovery of F-actin was consistent with our previous observation of an immediate reduction in moduli with eventual recovery when the cells were subjected to deformation. Results also show that neutrophils must be retained in their elongated shape for an extended period of time for pseudopod formation, suggesting that a combination of low driving pressures and small capillary diameters promotes cellular activation. These observations show that mechanical deformation of neutrophils into narrow pulmonary capillaries have the ability to influence cytoskeletal structure, the degree of cellular activation, and migrational tendencies of the cells.  相似文献   

19.
To improve our understanding of the pressure-flow characteristics of pulmonary capillaries, we analyzed by means of computer stimulation a theoretical model composed of 50 interconnected nonlinear elements. Each element required a critical pressure across it before flow occurred and there was a subsequent linear pressure-flow region whose slope, or resistance, could be related to the transmural pressure of the element ("distensibility"). The critical pressures and resistances of each element of the network were randomly chosen from distributions. We found that recruitment (i.e., onset of flow) occurred over a large range of network upstream or "arterial" pressures, and that relatively high arterial pressures were required before all elements had no distensibility. Intermittent and reverse flow were commonly seen in some elements as the arterial pressure was raised in steps. These flow reversals were particularly common when the critical pressures and resistances of the elements were inversely related. The critical pressures required for such behavior in the capillary segments of the pulmonary microcirculation were calculated to be extremely small, of the order of 0.02 cmH2O. Pressures of this magnitude might result from sticking of red cells to capillary walls or to each other. The properties of such a network may explain the patchiness of flow in the pulmonary microcirculation and the large range of arterial pressures over which recruitment is observed to occur.  相似文献   

20.
Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号