首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simplified procedure for the purification of low molecular weight phosphoprotein phosphatase acting on muscle phosphorylase a has been described from rabbit heart. The enzyme was purified to homogeneity by acid precipitation, ethanol treatment, and chromatography on Sephadex G-75 and Sepharose-histone. The purified enzyme showed a single band when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; the molecular weight calculated by this method was 34 000. The S20, W value and Stokes radius for the enzyme was 3.35 and 24.0 A(1 A = 0.1 nm), respectively. Using these two values, a molecular weight of 35 000 was calculated. Purified enzyme showed a wide substrate specificity and catalyzed the dephosphorylation of phosphorylase a, glycogen synthase D, phosphorylated histone, and phosphorylated casein. Kinetic studies revealed the lowest Km with glycogen synthase D and maximum Vmax for the reaction with phosphorylase a.  相似文献   

2.
The activity of two purified homogeneous phosphoprotein phosphatases types P I and P II) (phosphoprotein phosphohydrolase, EC 3.1.3.16) from rabbit liver (Khandelwal, R.L., Vandenheede, J.R., and Krebs, E.G. (1976) J. Biol. Chem. 251, 4850-4858) were examined in the presence of divalent cations, Pi, PPi, nucleotides, glycolytic intermediates and a number of other compounds using phosphorylase a, glycogen synthase D and phosphorylated histone as substrates. Enzyme activities were usually inhibited by divalent cations with all substrates; the inhibition being more pronounced with phosphorylase a. Zn2+ was the most potent inhibitor among the divalent cations tested. The enzyme was competitively inhibited by PPi (Ki = 0.1 mM for P I and 0.3 mM for PII), Pi (Ki = 15 mM for P I and 19.8 mM for P II) and p-nitrophenyl phosphate (Ki = 1 mM and 1.4 mM for P I and P II, respectively) employing phosphorylase a as the substrate. The compounds along with a number of others (Na2SO4, citrate, NaF and EDTA) also inhibited the enzyme activity with the other two substrates. Severe inhibition of the enzyme was also observed in the presence of the adenine and uridine nucleotides; monophosphate nucleotides being more inhibitory with phosphorylase a, whereas the di- and triphosphate nucleotides showed more inhibition with glycogen synthase D and phosphorylated histone. Cyclic AMP had no significant effect on enzyme activity with all the substrates tested. Phosphorylated metabolites did not show any marked effect on the enzyme activity with phosphorylase a as the substrate.  相似文献   

3.
Glycogen synthase phosphatase has been purified from bovine heart. This preparation catalyzes conversion of synthase D into I and phosphorylase a into b and is able to dephosphorylate synthase D, phosphorylase a, active phosphorylase kinase, and phosphorylated histone and casein. The activity of phosphatase was assayed with synthase D, phosphorylase a, and histone as substrates after chromatography on Sephadex G-100, after sucrose gradient centrifugation, and after isoelectric focusing in a sucrose gradient. In all cases no separation of enzyme activity was observed with the above substrates. The phosphatase activity on all substrates was lost at the same rate by heat denaturation. These results indicate that this enzyme preparation contains a single phosphoprotein phosphatase which is responsible for the activity observed on the above substrates.  相似文献   

4.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

5.
To gain more insight into the nature of the substrate specificity of protein phosphatases, four forms of glycogen synthase D were used as substrates for previously characterized protein phosphatases, IA, IB, and II, from rat liver cytosol. The phosphatase activity was measured as the conversion of glycogen synthase D to synthase I. While glycogen synthase isolated from rat liver as the D-form was activated mainly by phosphatase IA, rabbit skeletal muscle glycogen synthase previously phosphorylated in vitro by cyclic AMP-dependent protein kinase or phosphorylase kinase was activated efficiently by phosphatases IA, IB, and II. Glycogen synthase isolated from rabbit skeletal muscle as the D-form, however, was a poor substrate for all three phosphatases. These results suggest that the phosphorylation state as well as the primary structure of synthase D markedly affects the rate of its activation by individual protein phosphatases. A protein phosphatase released from rat liver particulate glycogen, on the other hand, activated all forms of synthase D used here readily and at about the same rate.  相似文献   

6.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

7.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

8.
Phosphoprotein phosphatase IA, which represents the major glycogen synthase phosphatase activity in rat liver cytosol, has been purified to apparent homogeneity by chromatography on DEAE-cellulose, histone - Sepharose-4B and Sephadex G-100. The molecular weight of the purified enzyme was 40 000 by gel filtration and 48 000 by sodium dodecyl sulfate gel electrophoresis, Phosphatase IA is therefore a monomeric protein. When treated with 80% ethanol at room temperature, phosphatase IA underwent an inactivation which was totally prevented by 2 mM MgCl2. Catalytically, phosphatase IA has a preference for glycogen synthase D compared with phosphatases IB and II and obligatorily requires Mg2+ or Mn2+ for activity. Maximum activity was attained at 5 mM MgCl2. Since Mg2+ does not activate other phosphoprotein phosphatases in rat liver cytosol, we propose the term 'Mg2+-dependent glycogen synthase phosphatase' for phosphatase IA.  相似文献   

9.
Glycogen synthase D was prepared from rat liver by chromatographing the glycogen pellet on DE-52 columns. It was free of glycogen and phosphorylase and converted readily into synthase I upon incubation with glycogen synthase phosphatase. With this synthase D as substrate, the identity of rat liver glycogen synthase phosphatase was studied by means of DE-52 column chromatography. Under the conditions developed, synthase phosphatase emerged from the columns as a sharp, single peak, and phosphorylase phosphatase came off later. The two phosphatases were also different from each other in stability, synthase phosphatase being less stable than phosphorylase phosphatase.  相似文献   

10.
1. Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) in the soluble fraction of rabbit liver which catalyzes the dephosphorylation of muscle phosphorylase a and phosphohistone (P-histone) was resolved into three active fractions by NaCl gradient elution from a DEAE-cellulose column (Fraction I, 11 and III in order of elution). They have different relative reaction rates for the two substrates and different degrees of stimulation by Mn-2+. Apparent Km values of Fraction I, II and III were 15, 20 and 16 muM for phosphorylase a, and 6.9, 5.3 and 4.4 muM for P-histone, respectively (with Mn-2+ in the assay mixture). 2. On sucrose density gradient centrifugation Fraction I and II were revealed to contain a major peak (7.0 S and 7.8 S, respectively) and a minor peak (4.0 S) of activity, while Fraction III contained only one peak (5.8 S). Freezing and thawing in the presence of 0.2 M mercaptoethanol dissociated all three fractions into subunits of similar molecular size (3.4 S), with concomitant enhancement of phosphorylase phosphatase activity. The Km values all became essentially the same (20 muM for phosphorylase a and 16 muM for P-histone). 3. The phosphorylase phosphatase and P-histone phosphatase activities could not be separated with any of the procedures described. Competition between the two phosphoprotein substrates was observed with some of the fractions.?  相似文献   

11.
The major secreted isoenzyme of human prostatic acid phosphatase (PAcP) (EC 3.1.3.2), which catalyses p-nitrophenyl phosphate (PNPP) hydrolysis at acid pH values, was found to have phosphotyrosyl protein phosphatase activity since it dephosphorylated three different phosphotyrosine-containing protein substrates. Several lines of evidence are presented to show that the phosphotyrosyl phosphatase and PAcP are the same enzyme. A highly purified PAcP enzyme preparation which contains a single N-terminal peptide sequence was used to test for the phosphotyrosyl phosphatase activity. Both activities comigrated during gel filtration by high performance liquid chromatography. Phosphotyrosyl phosphatase activity and PNPP acid phosphatase activity exhibited similar sensitivities to different effectors. Both phosphatase activities showed the same thermal stability. Specific anti-PAcP antibody reacted to the same extent with both phosphatase activities. PNPP acid phosphatase activity was competitively inhibited by the phosphotyrosyl phosphatase substrate. To characterize further the phosphotyrosyl phosphatase activity, the Km values using different phosphoprotein substrates were determined. The apparent Km values for phosphorylated angiotensin II, anti-pp60src immunoglobulin G and casein were in the nM range for phosphotyrosine residues, which was about 50-fold lower than the Km for phosphoserine residues in casein.  相似文献   

12.
The effects of hypothyroidism on glycogen metabolism in rat skeletal muscle were studied using the perfused rat hindlimb preparation. Three weeks after propylthiouracil treatment, serum thyroxine was undetectable and muscle glycogen and Glc-6-P were decreased. Basal and epinephrine-stimulated phosphorylase a and phosphorylase b kinase activities were also significantly reduced, as were epinephrine-stimulated cAMP accumulation and cAMP-dependent protein kinase activity. Conversely, basal and epinephrine-stimulated glycogen synthase I activities were significantly higher while the Ka of the enzyme for Glc-6-P was lower in hypothyroid animals. Propylthiouracil-treated rats also had increased phosphoprotein phosphatase activities towards phosphorylase and glycogen synthase and decreased activity of phosphatase inhibitor 1. beta-Adrenergic receptor binding and basal and epinephrine-stimulated adenylate cyclase activities were reduced in muscle particulate fractions from hypothyroid rats. Administration of triiodothyronine to rats for 3 days after 3 weeks of propylthiouracil treatment restored the altered metabolic parameters to normal. It is proposed that the decreased beta-adrenergic responsiveness of the enzymes of glycogen metabolism in hypothyroid rat skeletal muscle is due to increased activity of phosphoprotein phosphatases and to reduced beta-adrenergic receptors and adenylate cyclase activity.  相似文献   

13.
A phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) was partially purified from pig heart using as substrate H2B histone which had been phosphorylated at Ser-32 and Ser-36 by adenosine 3',5'-monophosphate-dependent protein kinase (EC 2.7.1.37). The enzyme had a molecular weight of approx. 250 000 and was converted to a smaller form with a molecular weight of approx. 30 000 upon treatment with ethanol. Phosphorylase alpha (EC 2.4.1.1) and phosphorylated H1 histone also served as substrates for both forms of the enzyme. The conversion of the large form of the enzyme to the small form decreased the phosphohistone phosphatase activity to 25-50% with a concomitant 7-fold increase in the phosphorylase alpha phosphatase activity. Ser-36 phosphate was removed 6- and 15-fold more rapidly than was Ser-32 phosphate by the large and small forms of the enzyme, respectively. Among Ser-36-containing tryptic phosphopeptides derived from phosphorylated H2B histone, Lys-Glu-Ser(P)-Tyr-Ser-Val-Tyr was the shortest phosphopeptide which was dephosphorylated at a significant reaction rate with the phosphoprotein phosphatase. The Km values for phosphorylated H2B histone and the tryptic phosphopeptide were 23.7 micron and 187.1 micron, respectively, with the large form, and 81.4 micron and 90.0 micron, respectively, with the small form of the enzyme.  相似文献   

14.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

15.
An Mn2+-activated phosphoprotein phosphatase of Mr = 80,000 from rabbit muscle catalyzes the dephosphorylation of skeletal muscle proteins that are phosphorylated by either phosphorylase kinase or cAMP-dependent protein kinase. Phosphorylase or glycogen synthase labeled by phosphorylase kinase at seryl residues 14 or 7, respectively, are both dephosphorylated by the phosphatase. Phosphorylase a and glycogen synthase compete with one another for the phosphatase. The phosphatase discriminates between different sites labeled by the cAMP-dependent protein kinase: glycogen synthase phosphorylated either to 1.0 or 1.8 mol phosphate/mol, or phosphorylase kinase phosphorylated on its β-subunit serve as substrates for the phosphatase, but the phosphorylase kinase α-subunit, the phosphorylated phosphatase inhibitor 1, or casein do not. Histone fraction IIA, phosphorylated by the catalytic subunit, was a poor substrate even at a concentration of 100 μm. Phosphorylation of the α-subunit of phosphorylase kinase had no influence on the kinetics of dephosphorylation of the β-subunit. Thus, the Mr = 80,000 phosphatase meets the functional definition of a protein phosphatase 1 [Cohen, P. (1978) Curr. Top. Cell. Regul.14, 117–196]. Furthermore, from a comparison of the known phosphorylated sites of these proteins, it appears that the phosphatase discriminates between different sites present in the phosphoproteins tested on the basis of the Km values for the reactions. It displays a preferential activity toward proteins with a primary structure wherein basic residues are two positions amino-terminal from the phosphoserine, AgrLysX-YSer(P) or LysArgX-YSer(P), rather and one residue away, ArgArgX-Ser(P).  相似文献   

16.
A phosphoprotein phosphatase active towards casein, phosphorylase a and mRNP proteins has been detected in the cytosol of cryptobiotic gastrulae of Artemia sp. This phosphatase has a relative molecular mass (Mr) of 225,000 as measured by gel filtration on Sephadex G-200 and has been purified to near homogeneity by ion-exchange chromatography on different DEAE-substituted matrices, affinity chromatography on polylysine-agarose, histone-Sepharose 4B and protamine-agarose, hydrophobic chromatography on phenyl-Sepharose 4B and gel filtration on Sephadex G-200. Sodium dodecyl sulphate gel electrophoresis of the final purification step revealed that the enzyme contains two types of subunits, alpha and beta, with Mr of 40,000 and 75,000, respectively. These values, in conjunction with the native Mr and the molar ratios of the subunits estimated by densitometric analysis of the gel, suggested that the subunit composition of the enzyme is alpha 2 beta 2. When treated with 1.7% (v/v) 2-mercaptoethanol at -20 degrees C or with ethanol, the enzyme released the catalytic alpha subunit of Mr 40,000. The protein phosphatase was activated by basic proteins e.g. protamine (A 0.5 = 1 microM), histone H1 (A 0.5 = 1.6 microM) and polylysine (A 0.5 = 0.2 microM) and inhibited by ATP (I 0.5 = 12 microM), NaF (I 0.5 = 3.1 mM) and pyrophosphate (I 0.5 = 0.6 mM). The enzyme is a polycation-stimulated protein phosphatase. Purified mRNP proteins, phosphorylated by the mRNP-associated casein kinase type II, are among the substrates used by the enzyme. The function of reversible phosphorylation-dephosphorylation of mRNP as a regulatory mechanism in mRNP metabolism is discussed.  相似文献   

17.
The smooth endoplasmic reticulum (ER) and cytosol fractions of liver homogenates exhibit phosphoprotein phosphatase activity towards glycogen synthase D and phosphorylase a. The following observations suggest that liver contains multiple forms of these phosphatases. Synthase phosphatase activity in either fraction was more readily inactivated by heating than phosphorylase phosphatase activity. Both synthase phosphatase and phosphorylase phosphatase activities in smooth ER were non-competitively inhibited by Mg2+, but were activated by this ion in the cytosol. Synthase phosphatase activities in cytosol and smooth ER were stimulated by a number of sugar phosphates, particularly glucose-1-phosphate, galactose-6-phosphate and fructose-6-phosphate. Erythrose-4-phosphate stimulated synthase phosphatase activity in the cytosol, but inhibited the microsomal enzyme. Phosphorylase phosphatase activities in either fraction were inhibited by most sugar phosphates. Adenosine mono-, di- and tri-phosphates inhibited phosphatase activities in both fractions. Low concentrations of AMP and ADP inhibited phosphorylase phosphatase activities to a greater extent than synthase phosphatase activities. Chromatography of the smooth ER fraction on DEAE-cellulose resulted in the separation of synthase phosphatase from phosphorylase phosphatase, as soluble proteins. The elution profile for the microsomal phosphatase was different from that for the cytosol enzymes. It is concluded that: both synthase phosphatase and phosphorylase phosphatase in liver have at least two isoenzyme forms; synthase phosphatase and phosphorylase phosphatase are separate enzymes; the different behaviour of microsomal and cytosol phosphatases towards divalent cations and sugar phosphates provides a potential mechanism for the differential regulation of these activities in liver.  相似文献   

18.
Polyamine hydrochlorides, NaCl and magnesium acetate stimulated the enzymatic dephosphorylation of phosphorylated H2B histone by two forms (large form, mol. wt. 250 000; small form, mol. wt. 30 000) of a pig heart phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16). These ionic compounds stimulated the large form of the enzyme 5--9-fold but stimulated the small form of theenzyme only 2-fold. With phosphorylated H2B histone as substrate, these effectors caused an increase in both Km and V values of the two forms of the enzyme. On the other hand, when a tryptic phosphodecapeptide derived from phosphorylated H2B histone was used as substrate, these effectors were always inhibitory apparently non-competitively with respect to the substrate. Using phosphorylated H1 histone as substrate, these effectors stimulated the large form of the enzyme 2-fold but inhibited the small form. With phosphorylase a as substrate, the reactions were also inhibited by these effectors irrespective of the enzyme employed. With respect to phosphorylase a, this inhibition was apparently of a competitive type for the large form and a non-competitive type for the small form of the enzyme.  相似文献   

19.
Purification and properties of acetyl-CoA carboxylase phosphatase   总被引:1,自引:0,他引:1  
Acetyl-CoA carboxylase phosphatase has been purified from the rat epididymal fat pad. The phosphatase occurs in a complex with the carboxylase. In the purification of the phosphatase, the high molecular weight complex was initially separated by sucrose gradient centrifugation, and the phosphatase was isolated from the complex by adjusting to 80% saturation with ethanol and by chromatography on Sephadex G-75. The molecular weight of the phosphatase is 71,000 as determined by sodium dodecyl sulfate gel electrophoresis and gel chromatography on Sephacryl-200 in the presence of 6 M urea. The Km for acetyl-CoA carboxylase and glycogen phosphorylase a are 1.5 microM and 37 microM, respectively. The phosphatase has a broad substrate specificity, being active toward glycogen synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, phosphorylase a, phosphoprotamine, and p-nitrophenyl phosphate, in addition to acetyl-CoA carboxylase from fat tissue and liver. Acetyl-CoA carboxylase inhibits the dephosphorylation of phosphoprotamine, indicating that the same activity is responsible for dephosphorylating both substrates. The phosphatase requires no metal ion for activity and is not inhibited by the rat liver phosphorylase phosphatase inhibitor protein. The significance of these findings is discussed in relation to the regulation of acetyl-CoA carboxylase, and the phosphatase is compared to other phosphoprotein phosphatases.  相似文献   

20.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrates purified liver synthase D, phosphorylase alpha and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5-10 fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphorylase phosphatase by synthase D (Ki approximately 2 units/ml). The inhibition of synthase phosphatase by phosphorylase alpha was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase alpha. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase alpha and histone in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号