首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of a unique opal suppressor seryl-tRNA in higher vertebrates which is converted to phosphoseryl-tRNA has been known for several years, but its function has been uncertain (see Hatfield, D. (1985) Trends Biochem. Sci. 10, 201-204 for review). In the present study, we demonstrate that this tRNA species also occurs in vivo as selenocysteyl-tRNA(Ser) suggesting that it functions both as a carrier molecule upon which selenocysteine is synthesized and as a direct selenocysteine donor to a growing polypeptide chain in response to specific UGA codons. [75Se]Seleno[3H]cysteyl-tRNA(Ser) formed by administering 75Se and [3H]serine to rat mammary tumor cells (TMT-081-MS) in culture was isolated from the cell extract. The amino acid attached to the tRNA was identified as selenocysteine following its deacylation and reaction with iodoacetate and 3-bromopropionate. The resulting alkyl derivatives co-chromatographed on an amino acid analyzer with authentic carboxymethylselenocysteine and carboxyethylselenocysteine. Seryl-tRNA(Ser) and phosphoseryl-tRNA(Ser) (Hatfield, D., Diamond, A., and Dudock, B. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6215-6219), which co-migrate on a reverse phase chromatographic column with selenocysteyl-tRNA(Ser), were also identified in extracts of TMT-018-MS cells. Hence, we propose that a metabolic pathway for selenocysteine synthesis in mammalian cells is the conversion of seryl-tRNA(Ser) via phosphoseryl-tRNA(Ser) to selenocysteyl-tRNA(Ser). In a ribosomal binding assay selenocysteyl-tRNA(Ser) recognizes UGA but not any of the serine codons. Selenocysteyl-tRNA(Ser) is deacylated more readily than seryl-tRNA(Ser) (i.e. 58% deacylation during 15 min at pH 8.0 and 37 degrees C as compared to 41%).  相似文献   

2.
The aminoacylation of rat liver tRNA with selenocysteine was studied in tissue slices and in a cell-free system with [75Se]selenocysteine and [75Se]selenite as substrates. [75Se]Selenocysteyl tRNA was isolated via phenol extraction, 1 M NaCl extraction and chromatography on DEAE-cellulose. [75Se]Selenocysteyl tRNA was purified on columns of DEAE-Sephacel, benzoylated DEAE-cellulose and Sepharose 4B. In a dual-label aminoacylation with [35S]cysteme, the most highly purified 75Se-fractions were > 100-fold purified relative to 35S. These fractions contained < 0.7% of the [35S]cysteine originally present in the total tRNA. When [35Se]selenocysteyl tRNA was purified from a mixture of 14C-labeled amino acids, over 97% of the [14C]aminoacyl tRNA was removed. The [75Se]selenocysteine was associated with the tRNA via an aminoacyl linkage. Criteria used for identification included alkaline hydrolysis and recovery of [75Se]selenocysteine, reaction with hydroxylamine and recovery of [75Se]selenocysteyl hydroxamic acid and release of 75Se by ribonuclease. The specificity of [75Se]selenocysteine aminoacylation was demonstrated by resistance to competition by a 125-fold molar excess of either unlabeled cysteine or a mixture of the other 19 amino acids in the cell-free selenocysteine aminoacylation system.  相似文献   

3.
Selenocysteyl-tRNAs that decode UGA were identified previously in animal and bacterial cells and the genes for these tRNAs have been shown to be widespread in animals and eubacteria. In the present study, we identify a selenocysteyl-tRNA that codes for UGA in Thalassiosira pseudonana, which is a diatom, and in Tetrahymena borealis, which is a ciliate. The fact that these very diverse unicellular organisms also contain a selenocysteyl-tRNA suggests that selenocysteine-containing proteins and the use of UGA as a codon for selenocysteine are widespread, if not ubiquitous, in nature.  相似文献   

4.
Selenocysteine, the selenium analog of cysteine, was identified in proteins of Vigna radiata (L.) Wilczak grown with selenate. To stabilize selenocysteine and prevent its breakdown, the carboxymethyl derivative was synthesized by the addition of iodoacetic acid to the protein extract from [75Se]selenate-grown plants. A 75Se-labeled component of the carboxymethylated protein hydrolysate possessed chromatographic properties identical to those of a 14C-labeled carboxymethylselenocysteine standard during paper and thin layer chromatography and during gel-exclusion, anion-exchange, and cation-exchange column chromatography. Detection of selenocysteine in proteins of a selenium-sensitive plant, and the possibility that the presence of this compound alters normal functions, provides an explanation for the toxic effects of selenium.  相似文献   

5.
《Plant science》1988,57(3):185-193
Sodium[75Se]selenite supplemented culture of Chlamydomonas, wild carrot, tobacco, bamboo, and rice cells as well as mung bean and soybean seedlings incorporated, without exception, 75Se into tRNAs. The content of 75Se-labeled tRNAs ranged from 0.04 to 1.89% of the total tRNAs in these seven plant species. [75Se]tRNA samples of wild carrot and mung bean were fractionated into six or seven seleno-tRNA species by chromatography on RPC-5 column. Samples of tobacco, bamboo and Chlamydomonas each exhibited only a single seleno-tRNA species with a close interspecific resemblance in the elution position among the three samples. All these [75Se]tRNAs contained a new, not yet identified 75Se-labeled nucleoside, whose retention time on HPLC was distinctly different from that of the previously reported bacterial selenonucleosides. [75Se]tRNA samples of rice, tobacco, bamboo, mung bean and Chlamydomonas also contained one or two minor 75Se-labeled nucleosides. These results suggest that (1) selenium-containing tRNAs appear to be widespread in the plant kingdom and (2) a new, not yet characterized selenonucleoside might be universal in plants.  相似文献   

6.
Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNASerAGA, tRNASerCGA, tRNASerUGA, and selenocysteine tRNA with UCA (tRNA[Ser]SecUCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA[Ser]SecUCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA[Ser]SecUCA led to increased levels of the tRNA[Ser]SecUCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNASerUGA and tRNATrpUCA contained detectable i6A37. Moreover, while tRNASer levels were unaffected by TRIT1 knockdown, the tRNA[Ser]SecUCA level was increased and the mt tRNASerUGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.  相似文献   

7.
Cysteine synthases were partially purified from leaf tissue of 3 selenium-accumulator species (Neptunia amplexicaulis, Astragalus racemosus and A. bisulcatus) and 4 non-accumulators (peas, white clover, A. sinicus and A. hamosus). The properties of all 7 enzymes with respect to cysteine synthesis from S2? and O-acetylserine (OAS) were similar. All of the enzymes also catalysed the synthesis of selenocysteine when S2? was replaced with Se2?. There were no distinct differences between the properties of the enzymes from selenium-accumulator and non-accumulator plants with respect to selenocysteine synthesis. Se2? inhibited the synthesis of cysteine and S2? inhibited the synthesis of selenocysteine implying competition between S2? and Se2? for the enzyme. The affinities of the enzymes for Se2? were substantially greater than for S2?, and Vmax (selenocysteine) was ca 7–48% of Vmax (cysteine). Isolated pea chloroplasts catalysed the synthesis of selenocysteine from OAS and Se2? at a rate of ca 22–26 μmol/mg Chl/hr. Sonicating the chloroplasts slightly enhanced the rate.  相似文献   

8.
The synthesis of glutathione peroxidase from [75Se]selenite was studied in slices and cell-free extracts from rat liver. The incorporation of [75Se]selenocysteine at the active site was detected by carboxymethylation and hydrolysis of partially purified glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) in the presence of [3H]selenocysteine and subsequent amino acid analysis. The synthesis of glutathione peroxidase in slices was inhibited by cycloheximide or puromycin and 75Se was incorporated from [75Se]selenite into free selenocysteine and selenocysteyl tRNA. Increasing concentrations of selenocystine caused a progressive dilution of the 75Se and a corresponding decrease in glutathione peroxidase labeling. In cell-free systems, [75Se]selenocysteyl tRNA was the best substrate for glutathione peroxidase synthesis. These results indicate the existence in rat liver of the de novo synthesis of free selenocysteine and a translational pathway of selenocysteine incorporation into glutathione peroxidase  相似文献   

9.
Recently, a mammalian tRNA which was previously designated as an opal suppressor seryl-tRNA and phosphoseryl-tRNA was shown to be a selenocysteyl-tRNA (B. J. Lee, P. J. Worland, J. N. Davis, T. C. Stadtman, and D. Hatfield, J. Biol. Chem. 264:9724-9727, 1989). Hence, this tRNA is now designated as selenocysteyl-tRNA[Ser]Sec, and its function is twofold, to serve as (i) a carrier molecule upon which selenocysteine is biosynthesized and (ii) as a donor of selenocysteine, which is the 21st naturally occurring amino acid of protein, to the nascent polypeptide chain in response to specific UGA codons. In the present study, the selenocysteine tRNA gene was sequenced from Xenopus laevis, Drosophila melanogaster, and Caenorhabditis elegans. The tRNA product of this gene was also identified within the seryl-tRNA population of a number of higher and lower animals, and the human tRNA[Ser]Sec gene was used as a probe to identify homologous sequences within genomic DNAs of organisms throughout the animal kingdom. The studies showed that the tRNA[Ser]Sec gene has undergone evolutionary change and that it is ubiquitous in the animal kingdom. Further, we conclude that selenocysteine-containing proteins, as well as the use of UGA as a codon for selenocysteine, are far more widespread in nature than previously thought.  相似文献   

10.
This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pK a and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2 , seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2 to Cys-SH).  相似文献   

11.
Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [35S]cysteine, in which [35S]sulfide and iron are incorporated into Fd to build up the 35S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [35S]sulfide or iron, or in Fe-S cluster formation itself. [35S]Sulfide was liberated from [35S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [35S]cysteine occurred before the formation of the 35S-labeled Fe-S cluster, and the amount of radioactivity in [35S]sulfide was greater than that in 35S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na2S) inhibited competitively formation of the 35S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [35S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster formation are discussed.  相似文献   

12.
Selenocysteine occurs in the peptide backbone of several selenoenzymes. The mechanism, of selenocysteine incorporation has not been well characterized. The incorporation of selenocysteine into protein in a rabbit reticulocyte lysate (RRL) was studied at high levels of selenocysteine. [75Se]Selenocysteine incorporation was inhibited by cycloheximide and by nuclease treatment. Random RNA copolymers were tested for protein synthesis activity in the messenger RNA-dependent RRL system. Of the active polymers, poly CIU and GU most strongly stimulated the incorporation of selenocysteine. In a series of four polymers with different ratios of U to G, incorporation of selenocysteine and cysteine increased with increasing percentages of U, suggesting that selenocysteine and cysteine responded to the same codon, presumably UGU. Of the 20 protein amino acids, only cysteine and cystine competed with selenocysteine incorporation. Selenocysteine was charged to cysteine-accepting tRNA in RRL. These results show that at supraphysiological concentrations selenocysteine can substitute for cysteine in RRL protein synthesis. Misincorporation of selenocysteine could be important when animal tissues contain high levels of selenium.  相似文献   

13.
Using the Fmoc/tBu protection scheme and the p-methoxybenzyl derivative of selenocysteine, the synthesis of related peptides in the selenol-protected form could be optimized by operating the coupling steps in the absence of auxiliary bases and by reducing the piperidine treatment to the minimum time required for quantitative Fmoc cleavage. Under these conditions, β-elimination of the p-methoxybenzylselenol as the main side reaction of these syntheses, as well as epimerization of the protected selenocysteine, was largely suppressed. Conversion of the selenol- and thiol-protected bis-selenocysteine and selenocysteine, cysteine peptides into the related cyclic monomeric forms by iodine-mediated oxidation failed since a complex mixture of compounds was produced. Cleavage of the selenoether bond with mercuric acetate was found to proceed smoothly, but displacement of the heavy metal ions by treatment with excesses of thiols or hydrogen sulphide was unsuccessful since a stable Hg2+ diselenide complex was obtained. However, oxidation was achieved in good yields by the dimethylsulphoxide/trifluoroacetic acid procedure and the peptides were then used for determining the redox potential of the diselenide and selenide/sulphide bridge, respectively. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

15.
Takaharu Mizutani   《FEBS letters》1989,250(2):142-146
In order to clarify the mechanisms of selenocysteine incorporation into glutathione peroxidase, some evidence to show the in vitro conversion of phosphoseryl-tRNA to selenocysteyl-tRNA is reported. [3H]Phosphoseryl-tRNA was incubated in a reaction mixture composed of SeO2, glutathione and NADPH in the presence of selenium-transferase partially purified. Analyses of amino acids on the product tRNA showed that a part (4%) of [3H]phosphoseryl-tRNA was changed to [3H]selenocysteyl-tRNA. The conversion from seryl-tRNAsu or major seryl-tRNAIGA was not found. Selenium-transferase was essential for the conversion. [3H]Selenocysteine, liberated from the tRNA, was modified with iodoacetic acid. The product was confirmed to be carboxymethyl-selenocysteine by two-dimensional TLC. Selenocysteyl-tRNAsu should be used to synthesize glutathione peroxidase by co-translational mechanisms.  相似文献   

16.
The formate dehydrogenases (Fdh) Fdh-O, Fdh-N, and Fdh-H, are the only proteins in Escherichia coli that incorporate selenocysteine at a specific position by decoding a UGA codon. However, an excess of selenium can lead to toxicity through misincorporation of selenocysteine into proteins. To determine whether selenocysteine substitutes for cysteine, we grew Escherichia coli in the presence of excess sodium selenite. The respiratory Fdh-N and Fdh-O enzymes, along with nitrate reductase (Nar) were co-purified from wild type strain MC4100 after anaerobic growth with nitrate and either 2 µM or 100 µM selenite. Mass spectrometric analysis of the catalytic subunits of both Fdhs identified the UGA-specified selenocysteine residue and revealed incorporation of additional, ‘non-specific’ selenocysteinyl residues, which always replaced particular cysteinyl residues. Although variable, their incorporation was not random and was independent of the selenite concentration used. Notably, these cysteines are likely to be non-essential for catalysis and they do not coordinate the iron-sulfur cluster. The remaining cysteinyl residues that could be identified were never substituted by selenocysteine. Selenomethionine was never observed in our analyses. Non-random substitution of particular cysteinyl residues was also noted in the electron-transferring subunit of both Fdhs as well as in the subunits of the Nar enzyme. Nar isolated from an E. coli selC mutant also showed a similar selenocysteine incorporation pattern to the wild-type indicating that non-specific selenocysteine incorporation was independent of the specific selenocysteine pathway. Thus, selenide replaces sulfide in the biosynthesis of cysteine and misacylated selenocysteyl-tRNACys decodes either UGU or UGC codons, which usually specify cysteine. Nevertheless, not every UGU or UGC codon was decoded as selenocysteine. Together, our results suggest that a degree of misincorporation of selenocysteine into enzymes through replacement of particular, non-essential cysteines, is tolerated and this might act as a buffering system to cope with excessive intracellular selenium.  相似文献   

17.
Selenium shares many chemical facets with sulphur but differs from it in the redox potential, especially of the Se2−/S2− oxidation state. The higher chemical reactivity of the deprotonated selenol has been used by Biology in the synthesis of the amino acid selenocysteine and its DNA-encoded incorporation into specific positions of proteins to enhance their structural role or their activity. Since selenocysteine is a steric isomer of cysteine, numerous control mechanisms have been developed which prevent cross-intrusion of the elements during biosynthesis and insertion. As described in this review, these fidelity steps occur at the genetic, biochemical and physiological level.  相似文献   

18.
19.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

20.
Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号