首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
Burkholderia pseudomallei causes melioidosis. Sequence typing this pathogen can reveal geographical origin and uncover epidemiological associations. Here, we describe B. pseudomallei genes encoding putative penicillin binding proteins (PBPs) and investigate their utility for determining phylogeography and differentiating closely related species. We performed in silico analysis to characterize 10 PBP homologs in B. pseudomallei 1026b. As PBP active site mutations can confer β-lactam resistance in Gram-negative bacteria, PBP sequences in two resistant B. pseudomallei strains were examined for similar alterations. Sequence alignments revealed single amino acid polymorphisms (SAAPs) unique to the multidrug resistant strain Bp1651 in the transpeptidase domains of two PBPs, but not directly within the active sites. Using BLASTn analyses of complete assembled genomes in the NCBI database, we determined genes encoding PBPs were conserved among B. pseudomallei (n = 101) and Burkholderia mallei (n = 26) strains. Within these genes, single nucleotide polymorphisms (SNPs) useful for predicting geographic origin of B. pseudomallei were uncovered. SNPs unique to B. mallei were also identified. Based on 11 SNPs identified in two genes encoding predicted PBP-3s, a dual-locus sequence typing (DLST) scheme was developed. The robustness of this typing scheme was assessed using 1,523 RefSeq genomes from B. pseudomallei (n = 1,442) and B. mallei (n = 81) strains, resulting in 32 sequence types (STs). Compared to multi-locus sequence typing (MLST), the DLST scheme demonstrated less resolution to support the continental separation of Australian B. pseudomallei strains. However, several STs were unique to strains originating from a specific country or region. The phylogeography of Western Hemisphere B. pseudomallei strains was more highly resolved by DLST compared to internal transcribed spacer (ITS) typing, and all B. mallei strains formed a single ST. Conserved genes encoding PBPs in B. pseudomallei are useful for strain typing, can enhance predictions of geographic origin, and differentiate strains of closely related Burkholderia species.  相似文献   

3.
Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure.  相似文献   

4.
Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.  相似文献   

5.

Background

The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations.

Results

B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria.

Conclusion

The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.  相似文献   

6.
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 102, 103 and 104 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 103 and 104 B. pseudomallei cells, animals infected with 102 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate with those seen in human infections.  相似文献   

7.

Background

For Yersinia pestis, Burkholderia pseudomallei, and Burkholderia mallei, conventional broth microdilution (BMD) is considered the gold standard for antimicrobial susceptibility testing (AST) and, depending on the species, requires an incubation period of 16–20?h, or 24–48?h according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. After a diagnosis of plague, melioidosis or glanders during an outbreak or after an exposure event, the timely distribution of appropriate antibiotics for treatment or post-exposure prophylaxis of affected populations could reduce mortality rates.

Results

Herein, we developed and evaluated a rapid, automated susceptibility test for these Gram-negative bacterial pathogens based on time-lapse imaging of cells incubating in BMD microtitre drug panels using an optical screening instrument (oCelloScope). In real-time, the instrument screened each inoculated well containing broth with various concentrations of antibiotics published by CLSI for primary testing: ciprofloxacin (CIP), doxycycline (DOX) and gentamicin (GEN) for Y. pestis; imipenem (IPM), ceftazidime (CAZ) and DOX for B. mallei; and IPM, DOX, CAZ, amoxicillin-clavulanic acid (AMC) and trimethoprim-sulfamethoxazole (SXT) for B. pseudomallei. Based on automated growth kinetic data, the time required to accurately determine susceptibility decreased by ≥70% for Y. pestis and?≥?50% for B. mallei and B. pseudomallei compared to the times required for conventional BMD testing. Susceptibility to GEN, IPM and DOX could be determined in as early as three to six hours. In the presence of CAZ, susceptibility based on instrument-derived growth values could not be determined for the majority of B. pseudomallei and B. mallei strains tested. Time-lapse video imaging of these cultures revealed that the formation of filaments in the presence of this cephalosporin at inhibitory concentrations was detected as growth. Other β-lactam-induced cell morphology changes, such as the formation of spheroplasts and rapid cell lysis, were also observed and appear to be strain- and antibiotic concentration-dependent.

Conclusions

A rapid, functional AST was developed and real-time video footage captured β-lactam-induced morphologies of wild-type B. mallei and B. pseudomallei strains in broth. Optical screening reduced the time to results required for AST of three Gram-negative biothreat pathogens using clinically relevant, first-line antibiotics compared to conventional BMD.
  相似文献   

8.
Burkholderia pseudomallei and B. mallei are Gram-negative bacterial pathogens that cause melioidosis in humans and glanders in horses, respectively. Both bacteria are classified as category B select agents in the United States. Due to strict select-agent regulations, the number of antibiotic selection markers approved for use in these bacteria is greatly limited. Approved markers for B. pseudomallei include genes encoding resistance to kanamycin (Km), gentamicin (Gm), and zeocin (Zeo); however, wild type B. pseudomallei is intrinsically resistant to these antibiotics. Selection markers for B. mallei are limited to Km and Zeo resistance genes. Additionally, there are few well developed counter-selection markers for use in Burkholderia. The use of SacB as a counter-selection method has been of limited success due to the presence of endogenous sacBC genes in the genomes of B. pseudomallei and B. mallei. These impediments have greatly hampered the genetic manipulation of B. pseudomallei and B. mallei and currently few reliable tools for the genetic manipulation of Burkholderia exist. To expand the repertoire of genetic tools for use in Burkholderia, we developed the suicide plasmid pMo130, which allows for the compliant genetic manipulation of the select agents B. pseudomallei and B. mallei using allelic exchange. pMo130 harbors an aphA gene which allows for Km selection, the reporter gene xylE, which allows for reliable visual detection of Burkholderia transformants, and carries a modified sacB gene that allows for the resolution of co-integrants. We employed this system to generate multiple unmarked and in-frame mutants in B. pseudomallei, and one mutant in B. mallei. This vector significantly expands the number of available tools that are select-agent compliant for the genetic manipulation of B. pseudomallei and B. mallei.  相似文献   

9.
Infections with Pseudomonas aeruginosa have been a long-standing challenge for clinical therapy because of complex pathogenesis and resistance to antibiotics, thus attaching importance to explore effective vaccines for prevention and treatment. In the present study, we constructed a novel DNA vaccine by inserting mutated gene toxAm encoding Pseudomonas Exotoxin A and gene pcrV encoding tip protein of the type III secretion system into respective sites of a eukaryotic plasmid pIRES, named pIRES-toxAm-pcrV, and next evaluated the efficacy of the vaccine in murine acute Pseudomonas pneumonia models. Compared to DNA vaccines encoding single antigen, mice vaccinated with pIRES-toxAm-pcrV elicited higher levels of antigen-specific serum immunoglobulin G (IgG), enhanced splenic cell proliferation and cytokine secretion in response to Pseudomonas aeruginosa antigens, additionally PAO1 challenge in mice airway resulted in reduced bacteria burden and milder pathologic changes in lungs. Besides, it was observed that immunogenicity and protection could be promoted by the CpG ODN 1826 adjuvant. Taken together, it’s revealed that recombinant DNA vaccine pIRES-toxAm-pcrV was a potential candidate for immunotherapy of Pseudomonas aeruginosa infection and the CpG ODN 1826 a potent stimulatory adjuvant for DNA vaccination.  相似文献   

10.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   

11.
Inoculation with Rhizobium japonicum or R. meliloti reduced the electrical transmembrane potential (Em) of soybean (Glycine max [L.] Merr.) root cells within 1 day. The response could be attributed to altered diffusion potential (ED). Em values return to control levels by the second day after inoculation, but again were reduced in R. meliloti-inoculated tissue on the seventh day. Increased concentrations of sodium phosphate in the perfusion solution magnified the effects of inoculation on Em. Neither heat-killed rhizobia nor living cells of Pseudomonas fluorescens elicited the response. The Em and ED of nodule cells were nearly 20% lower than corresponding values from adjacent cortical cells of the root.  相似文献   

12.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

13.
Endoglucanase genes from Pseudomonas fluorescens subsp. cellulosa and Pseudomonas sp. were cloned and characterized. DNA hybridization studies showed that these genes are homologous and that each species has one copy of the gene per genome. The DNA fragment from Pseudomonas sp. codes for, at most, a 23-kilodalton endoglucanase.  相似文献   

14.
15.
Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP7 proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei.  相似文献   

16.
Pseudomonas aeruginosa has a choline uptake system which is expressed in bacteria grown in the presence of succinate and ammonium chloride as the carbon and nitrogen source, respectively. This system obeys Michaelis-Menten kinetics with an apparent Km value of 53 μM; its activity is not inhibited by high osmolarities in the medium but is partially inhibited by choline metabolites such as betaine and dimethylglycine.  相似文献   

17.
The compositional heterogeneity of DNAs of A (normal) and B (supernumerary) chromosomes of Aegilops speltoides, Ae. mutica and Triticum aestivum has been compared in order to elucidate the mechanism of B-chromosome disruption of meiotic pairing in interspecific hybrids. Comparisons of % heterologous association after DNA/DNA hybridation at C0t 10?2 (highly repetitious DNA) and C0t 100 (moderately repetitious DNA), and comparisons of nucleotide base divergence (ΔTms) and thermal elution profiles of homologous and heterologous duplexes, show that genotypes of Aegilops spp., having large numbers of Bs, do not carry additional families of repetitious DNA exclusive to B-chromosomes. Neither the presence of Bs nor the direction of DNA/DNA hybridisation affect the above parameters. No cryptic DNA satellites were revealed in A- and B-chromosome DNA after sedimentation in actinomycin D-CsCl gradients; and there were no significant differences in buoyant densities of main-band DNA. Mean melting temperatures (Tm); transition temperatures (ΔT) and numbers and positions of peaks of dissociating DNA fractions in profiles of differentiated melting curves of native DNAs were similar in strictly comparable denaturation conditions. One small AT-rich (< 5%) DNA fraction correlated with speltoides Bs was revealed; however, no corresponding fraction is associated with mutica Bs. The overall similarity in numbers and base composition of families of DNA (repetitious and unique) of As and Bs is discussed in relation to the origin of Bs and the origin of the meiotic diploidising system in haploid T. aestivum.  相似文献   

18.
The binding of membrane potential cationic probes was studied on phospholipidic liposomes by equilibrium dialysis and microelectrophoresis. Surface binding of lipophilic cations (benzyltributylammonium or tetraphenylphosphonium) appears to be the major accumulation mechanism in liposomes and simulates the existence of a negative transmembrane potential (Em), in absence of any transmembrane ionic gradient. Furthermore, this apparent negative potential has a classical response with regard to common Em effectors, namely a depolarization induced by KCl or FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). The relevance of these results to the study of transtonoplast potential difference on isolated vacuoles was investigated. Tetraphenylphosphonium was shown to bind to the tonoplast, the essential features of binding and interaction with Em effectors being similar in vacuoles and liposomes. Therefore the assumption of negligible binding of cationic probe to vacuoles, classically admitted in determinations of vacuolar Em using lipophilic cations, is untenable.  相似文献   

19.
Adequate experimental conditions for slime production by Pseudomonas aeruginosa were investigated using a cellophane plate method. Definite slime production was observed on heart infusion agar, brain heart infusion agar, yeast extract agar and synthetic agar, but not on nutrient agar. The addition of phosphate to the nutrient agar above 0.05% caused visible slime formation. Incubation at 37 C resulted in a higher yield of slime than at 25 C. Longer incubation seemed more favorable for slime production, while the pH reaction of the test media did not effect the slime yield. All the test cultures of P. aeruginosa produced large amounts of slime by this procedure. Cultures of Pseudomonas fluorescens, other Pseudomonas spp. and certain vibrios also produced slime under these experimental conditions.  相似文献   

20.
Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号