首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An abnormal isoform, PrP(Sc), of the normal cellular prion protein (PrP(C)) is the major component of the causative agent of prion diseases. Both isoforms were found to possess the same covalent structures, including a C-terminal glycosylphosphatidylinositol anchor, but different secondary and tertiary structures. In this study, a variant of full-length PrP with an unpaired cysteine at the C terminus was recombinantly produced in Escherichia coli, covalently coupled to a thiol-reactive phospholipid, and incorporated into liposomes to serve as a model for studying possible changes in structure and stability of recombinant PrP upon membrane attachment. Covalent coupling of PrP to liposomes did not result in significant structural changes observable by far-UV circular dichroism. Moreover, limited proteolysis experiments failed to detect changes in the stability of liposome-bound PrP relative to soluble PrP. These data suggest that the requirement of raft localization for the PrP(C) to PrP(Sc) conversion, observed previously in cell culture models, is not because of a direct influence of raft lipids on the structure and stability of membranebound PrP(C) but caused by other factors, e.g. increased local PrP concentrations or high effective concentrations of membrane-associated conversion factors. The availability of recombinant PrP covalently attached to liposomes provides the basis for systematic in vitro conversion assays with recombinant PrP on the surface of membranes. In addition, our results indicate that the three-dimensional structure of mammalian PrP(C) in membranes is identical to that of recombinant PrP in solution.  相似文献   

2.
The prion protein (PrP) binds divalent copper at physiologically relevant conditions and is believed to participate in copper regulation or act as a copper-dependent enzyme. Ongoing studies aim at determining the molecular features of the copper binding sites. The emerging consensus is that most copper binds in the octarepeat domain, which is composed of four or more copies of the fundamental sequence PHGGGWGQ. Previous work from our laboratory using PrP-derived peptides, in conjunction with EPR and X-ray crystallography, demonstrated that the HGGGW segment constitutes the fundamental binding unit in the octarepeat domain [Burns et al. (2002) Biochemistry 41, 3991-4001; Aronoff-Spencer et al. (2000) Biochemistry 39, 13760-13771]. Copper coordination arises from the His imidazole and sequential deprotonated glycine amides. In this present work, recombinant, full-length Syrian hamster PrP is investigated using EPR methodologies. Four copper ions are taken up in the octarepeat domain, which supports previous findings. However, quantification studies reveal a fifth binding site in the flexible region between the octarepeats and the PrP globular C-terminal domain. A series of PrP peptide constructs show that this site involves His96 in the PrP(92-96) segment GGGTH. Further examination by X-band EPR, S-band EPR, and electron spin-echo envelope spectroscopy, demonstrates coordination by the His96 imidazole and the glycine preceding the threonine. The copper affinity for this type of binding site is highly pH dependent, and EPR studies here show that recombinant PrP loses its affinity for copper below pH 6.0. These studies seem to provide a complete profile of the copper binding sites in PrP and support the hypothesis that PrP function is related to its ability to bind copper in a pH-dependent fashion.  相似文献   

3.
Recombinant prion protein has been produced in insoluble form and refolded following solubilization with denaturants. It is, however, preferable to use a soluble recombinant protein prepared without artificial solubilization. In this study, a soluble recombinant prion protein was produced in Escherichia coli cells by coexpression of neuregulin I-β1 and purified to high purity.  相似文献   

4.
Prion diseases are fatal neurodegenerative disorders associated with conformational conversion of the cellular prion protein, PrP(C), into a misfolded, protease-resistant form, PrP(Sc). Here we show, for the first time, the oligomerization and fibrillization of the C-terminal domain of murine PrP, mPrP-(121-231), which lacks the entire unstructured N-terminal domain of the protein. In particular, the construct we used lacks amino acid residues 106-120 from the so-called amyloidogenic core of PrP (residues 106-126). Amyloid formation was accompanied by acquisition of resistance to proteinase K digestion. Aggregation of mPrP-(121-231) was investigated using a combination of biophysical and biochemical techniques at pH 4.0, 5.5, and 7.0 and at 37 and 65 degrees C. Under partially denaturing conditions (65 degrees C), aggregates of different morphologies ranging from soluble oligomers to mature amyloid fibrils of mPrP-(121-231) were formed. Transmission electron microscopy analysis showed that roughly spherical aggregates were readily formed when the protein was incubated at pH 5.5 and 65 degrees C for 1 h, whereas prolonged incubation led to the formation of mature amyloid fibrils. Samples incubated at 65 degrees C at pH 4.0 or 7.0 presented an initial mixture of oligomers and protofibrils or fibrils. Electrophoretic analysis of samples incubated at 65 degrees C revealed formation of sodium dodecyl sulfate-resistant oligomers (dimers, trimers, and tetramers) and higher molecular weight aggregates of mPrP-(121-231). These results demonstrate that formation of an amyloid form with physical properties of PrP(Sc) can be achieved in the absence of the flexible N-terminal domain and, in particular, of residues 106-120 of PrP and does not require other cellular factors or a PrP(Sc) template.  相似文献   

5.
The conversion of the alpha-helical, cellular isoform of the prion protein (PrP C ) to the insoluble, beta-sheet-rich, infectious, disease-causing isoform (PrP Sc ) is the fundamental event in the prion diseases. The C-terminal fragment of PrP Sc (PrP 27-30) is formed by limited proteolysis and retains infectivity. Unlike full-length PrP Sc , PrP 27-30 polymerizes into rod-shaped structures with the ultra-structural and tinctorial properties of amyloid. To study the folding of PrP, both with respect to the formation of PrP Sc from PrP C and the assembly of rods from PrP 27-30, we solubilized Syrian hamster (sol SHa) PrP 27-30 in low concentrations (0.2%) of sodium dodecyl sulfate (SDS) under conditions previously used to study the structural transitions of this protein. Sol SHaPrP 27-30 adopted a beta-sheet-rich structure at SDS concentrations between 0.02% and 0.04% and remained soluble. Here we report that NaCl stabilizes SHaPrP 27-30 in a soluble, beta-sheet-rich state that allows fibril assembly to proceed over several weeks. Under these conditions, fibril formation occurred not only with sol PrP 27-30, but also with native SHaPrP C . Addition of sphingolipids seems to increase fibril growth. When recombinant (rec) SHaPrP(90-231) was exposed to low concentrations of SDS, similar to those used to polymerize sol SHaPrP 27-30 in the presence of 250 mM NaCl, fibril formation occurred regularly. When fibrils formed from PrP 27-30 or PrP C were bioassayed in transgenic mice overexpressing full-length SHaPrP, no infectivity was obtained, whereas amyloid fibrils formed of rec mouse PrP(89-230) were infectious. At present, it cannot be determined whether the lack of infectivity is caused by a difference in the structure of the fibrils or in the bioassay conditions.  相似文献   

6.
We have investigated the conformational transition and aggregation process of recombinant Syrian hamster prion protein (SHaPrP90-232) by Fourier transform infrared spectroscopy, circular dichroism spectroscopy, light scattering, and electron microscopy under equilibrium and kinetic conditions. SHaPrP90-232 showed an infrared absorbance spectrum typical of proteins with a predominant alpha-helical structure both at pH 7.0 and at pH 4.2 in the absence of guanidine hydrochloride. At pH 4.2 and destabilizing conditions (0.3-2 m guanidine hydrochloride), the secondary structure of SHaPrP90-232 was transformed to a strongly hydrogen-bonded, most probably intermolecularly arranged antiparallel beta-sheet structure as indicated by dominant amide I band components at 1620 and 1691 cm-1. Kinetic analysis of the transition process showed that the decrease in alpha-helical structures and the increase in beta-sheet structures occurred concomitantly according to a bimolecular reaction. However, the concentration dependence of the corresponding rate constant pointed to an apparent third order reaction. No beta-sheet structure was formed within the dead time (190 ms) of the infrared experiments. Light scattering measurements revealed that the structural transition of SHaPrP90-232 was accompanied by formation of oligomers, whose size was linearly dependent on protein concentration. Extrapolation to zero protein concentration yielded octamers as the smallest oligomers, which are considered as "critical oligomers." The small oligomers showed spherical and annular shapes in electron micrographs. Critical oligomers seem to play a key role during the transition and aggregation process of SHaPrP90-232. A new model for the structural transition and aggregation process of the prion protein is described.  相似文献   

7.
Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of β-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90–231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H–15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90–114) and C-terminal regions (residues 226–231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.  相似文献   

8.
In pathologies due to protein misassembly, low oligomeric states of the misfolded proteins rather than large aggregates play an important biological role. In prion diseases the lethal evolution is associated with formation of PrP(Sc), a misfolded and amyloid form of the normal cellular prion protein PrP. Although several molecular mechanisms were proposed to account for the propagation of the infectious agent, the events responsible for cell death are still unclear. The correlation between PrP(C) expression level and the rate of disease evolution on one side, and the fact that PrP(Sc) deposition in brain did not strictly correlate with the apparition of clinical symptoms on the other side, suggested a potential role for diffusible oligomers in neuronal death. To get better insight into the molecular mechanisms of PrP(C) oligomerization, we studied the heat-induced oligomerization pathway of the full-length recombinant ovine PrP at acidic pH. This led to the irreversible formation of two well-identified soluble oligomers that could be recovered by size-exclusion chromatography. Both oligomers displayed higher beta-sheet content when compared to the monomer. A sequential two-step multimolecular process accounted for the rate of their formation and their ratio partition, both depending on the initial protein concentration. Small-angle X-ray scattering allowed the determination of the molecular masses for each oligomer, 12mer and 36mer, as well as their distinct oblate shapes. The two species differed in accessibility of polypeptide chain epitopes and of pepsin-sensitive bonds, in a way suggesting distinct conformations for their monomeric unit. The conversion pathway leading to these novel oligomers, displaying contrasted biochemical reactivities, might be a clue to unravel their biological roles.  相似文献   

9.
A CTB-NSP4(175) fusion gene encoding the entire 175-aa murine rotavirus NSP4 enterotoxin protein was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB-NSP4(175) enterotoxin fusion gene was detected in the genomic DNA of transformed leaves by PCR DNA amplification. Synthesis and assembly of the full-length CTB-NSP4(175) fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-NSP4(175 )fusion protein pentamers to intestinal epithelial cell membrane receptors was quantified by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). The ELISA results showed that CTB-NSP4(175) fusion protein was 0.006-0.026% of the total soluble tuber protein. The synthesis of CTB-NSP4(175) monomers and their assembly into biologically active oligomers in transformed potato tubers demonstrates the feasibility of using edible plants for the synthesis of enterocyte-targeted full-length rotavirus enterotoxin antigens that retain all of their pathogenic epitopes for initiation of a maximum mucosal immune response.  相似文献   

10.
A considerable body of data supports the model that the infectious agent (called a prion) which causes the transmissible spongiform encephalopathies is a replicating polypeptide devoid of nucleic acid. Prions are believed to propagate by changing the conformation of the normal cellular prion protein (PrPc) into an infectious isoform without altering the primary sequence. Proteins equivalent to the mature form of the wild-type mouse prion protein (residues 23-231) or with a mutation equivalent to that associated with Gerstmann-Straüssler-Scheinker disease (proline to leucine at codon 102 in human; 101 in mouse) were expressed in E. coli. The mutation did not alter the relative proteinase K susceptibility properties of the mouse prion proteins. The wild-type and mutant proteins were analyzed by circular dichroism under different pH and temperature conditions. The mutation was associated with a decrease in alpha-helical content, while the beta-sheet content of the two proteins was unchanged. This suggests the mutation, while altering the secondary structure of PrP, is not sufficient to induce proteinase K resistance and could therefore represent an intermediate isoform along the pathway toward prion formation.  相似文献   

11.
The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β‐state oligomers. Herein, we demonstrate that β‐state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full‐length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP‐induced neurotoxicity. We have characterized protein misfolding cyclic amplification‐induced monomer‐to‐oligomer conversion of PrP from three species using western blotting, circular dichroism, size‐exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β‐oligomers are toxic to primary mouse cortical neurons independent of the presence of PrPC in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer‐induced apoptosis via regulation of Bcl‐2, Bax, and caspase‐3 in both wild‐type and PrP?/? cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain.

  相似文献   


12.
Disease-associated prion protein oligomers inhibit the 26S proteasome   总被引:7,自引:0,他引:7  
The mechanism of cell death in prion disease is unknown but is associated with the production of a misfolded conformer of the prion protein. We report that disease-associated prion protein specifically inhibits the proteolytic beta subunits of the 26S proteasome. Using reporter substrates, fluorogenic peptides, and an activity probe for the beta subunits, this inhibitory effect was demonstrated in pure 26S proteasome and three different cell lines. By challenge with recombinant prion and other amyloidogenic proteins, we demonstrate that only the prion protein in a nonnative beta sheet conformation inhibits the 26S proteasome at stoichiometric concentrations. Preincubation with an antibody specific for aggregation intermediates abrogates this inhibition, consistent with an oligomeric species mediating this effect. We also present evidence for a direct relationship between prion neuropathology and impairment of the ubiquitin-proteasome system (UPS) in prion-infected UPS-reporter mice. Together, these data suggest a mechanism for intracellular neurotoxicity mediated by oligomers of misfolded prion protein.  相似文献   

13.
A soluble, oligomeric beta-sheet-rich conformational variant of recombinant full-length prion protein, PrP beta, was generated that aggregates into amyloid fibrils, PrP betaf. These fibrils have physico-chemical and structural properties closely similar to those of pathogenic PrP Sc in scrapie-associated fibrils and prion rods, including a closely similar proteinase K digestion pattern and Congo red birefringence. The conformational transition from PrP C to PrP beta occurs at pH 5.0 in bicellar solutions containing equimolar mixtures of dihexanoyl-phosphocholine and dimyristoyl-phospholipids, and a small percentage of negatively charged dimyristoyl-phosphoserine. The same protocol was applicable to human, cow, elk, pig, dog and mouse PrP. Comparison of full-length hPrP 23-230 with the N-terminally truncated human PrP fragments hPrP 90-230, hPrP 96-230, hPrP 105-230 and hPrP 121-230 showed that the flexible peptide segment 105-120 must be present for the generation of PrP beta. Dimerization of PrP C represents the rate-limiting step of the PrP C-to-PrP beta conformational transition, which is dependent on the amino acid sequence. The activation enthalpy of dimerization is about 130 kJ/mol for the recombinant full-length human and bovine prion proteins, and between 260 and 320 kJ/mol for the other species investigated. The in vitro conversion assay described here permits direct molecular characterization of processes that might be closely related to conformational transitions of the prion protein in transmissible spongiform encephalopathies.  相似文献   

14.
Sheep susceptibility to scrapie is governed by polymorphisms at two major sites, codons 136 and 171, of the prp gene. To get more insight into the prion protein (PrP) sequence-linked basis of differential scrapie susceptibility, a high yield one-step method for the purification (over 99% final purity) of the full-length recombinant sheep PrP was developed, based on the affinity of the conserved octapeptide repeats for transition-metal cations. Thermal and chemical denaturation experiments and limited proteolysis studies were performed on the natural variants (A136R171, V136Q171 and A136Q171) and a recombinant PrP mutated at position 136 (V136R171). Results revealed the influence of mutations in positions 136 and 171 on the folding thermodynamic parameters and on the conformation of the C-terminal domain. Together, our results show that the VQ cellular protein linked to higher scrapie susceptibility is intrinsically more compact and/or stable than the resistance-linked AR counterpart. This might lead to a lower in vivo clearance rate of VQ and a consequently higher probability of occurrence of pathological events.  相似文献   

15.
Mice defective for C1q complement factor show enhanced resistance to peripheral prion inoculation, and previous work demonstrated a direct interaction between C1q and conformationally modified PrP. However, the nature and physiological consequences of this interaction remain uncharacterized. PrP amino acids 141-159 has been identified as a potential C1q binding site; we show, by both surface plasmon resonance (SPR) spectroscopy and ELISA, that C1q and its globular region bind to PrP mutagenized in the region of interest with comparable efficiency to that of wild-type protein. To test PrP's ability to activate complement, soluble oligomers of the PrP constructs were made. Only PrP and mutagenized PrP oligomers activate the classical complement cascade while PrP monomer and the C-terminal domain, both in oligomeric and in monomeric form, failed to induce activation. This suggests that a conformational change in PrP, which occurs both when PrP is bound to an SPR sensor chip and when it undergoes oligomerization, is requisite for PrP/C1q interaction and activation of the complement cascade. We propose that C1q may act as a natural sensor for prions, leading to activation of the classical complement cascade, which could result in local inflammation and subsequent recruitment of the immune cells that prions initially infect.  相似文献   

16.
The prion protein (PrP) is a cell-surface Cu(2+)-binding glycoprotein that when misfolded is responsible for a number of transmissible spongiform encephalopathies. Full-length PrP-(23-231) and constructs in which the octarepeat region has been removed, or His(95) and His(110) is replaced by alanine residues, have been used to elucidate the order and mode of Cu(2+) coordination to PrP-(23-231). We have built on our understanding of the appearance of visible CD spectra and EPR for various PrP fragments to characterize Cu(2+) coordination to full-length PrP. At physiological pH, Cu(2+) initially binds to full-length PrP in the amyloidogenic region between the octarepeats and the structured domain at His(95) and His(110). Only subsequent Cu(2+) ions bind to single histidine residues within the octarepeat region. Ni(2+) ions are used to further probe metal binding and, like Cu(2+), Ni(2+) will bind individually to His(95) and His(110), involving preceding main chain amides. Competitive chelators are used to determine the affinity of the first mole equivalent of Cu(2+) bound to full-length PrP; this approach places the affinity in the nanomolar range. The affinity and number of Cu(2+) binding sites support the suggestion that PrP could act as a sacrificial quencher of free radicals generated by copper redox cycling.  相似文献   

17.
The scrapie prion protein isoform, PrPSc, is a prion-associated marker that seeds the conformational conversion and polymerization of normal protease-sensitive prion protein (PrP-sen). This seeding activity allows ultrasensitive detection of PrPSc using cyclical sonicated amplification (PMCA) reactions and brain homogenate as a source of PrP-sen. Here we describe a much faster seeded polymerization method (rPrP-PMCA) which detects >or=50 ag of hamster PrPSc (approximately 0.003 lethal dose) within 2-3 d. This technique uses recombinant hamster PrP-sen, which, unlike brain-derived PrP-sen, can be easily concentrated, mutated and synthetically tagged. We generated protease-resistant recombinant PrP fibrils that differed from spontaneously initiated fibrils in their proteolytic susceptibility and by their infrared spectra. This assay could discriminate between scrapie-infected and uninfected hamsters using 2-microl aliquots of cerebral spinal fluid. This method should facilitate the development of rapid, ultrasensitive prion assays and diagnostic tests, in addition to aiding fundamental studies of structure and mechanism of PrPSc formation.  相似文献   

18.
The kinetic parameters for release of fibrinopeptide A (FPA) from human fibrinogen by thrombin are: Km = 2.3 X 10(-6)M and Vmax. = 1.1 X 10(-10)mol of FPA/s per unit of thrombin; for fibrin formation, Km is similar to that for FPA release, but, the conditions of the present study, Vmax. was approximately half of that for FPA release. The formation of fibrin polymer before the sol-gel transition was studied by gel-permeation chromatography combined with effluent analysis for fibrinogen antigen and residual FPA. Polymer formation in purified fibrinogen incubated with thrombin proceeded as a bimolecular association of exposed sites in a manner predicted by probability calculations and assuming random FPA cleavage. Each oligomer consisted of n molecules of fibrin monomer and two fibrinogen molecules, each of the latter lacking one FPA molecule, i.e. each oligomer, regardless of molecular size, retains two FPA molecules. The addition of 5 mM-CaCl2 to the reaction mixture changed the rate of polymer formation, so that dimer was no longer the prevalent oligomer; in the presence of Ca2+, the trimer was the oligomer in highest concentration. The polymers formed in the presence of calcium were similar in composition to those without, i.e. 2 mol of FPA/mol of oligomer. EDTA-treated plasma samples incubated for short periods of time, 30s or less, with thrombin ranging in concentration up to 1 N.I.H. unit/ml did not form clots during the 10-15 min period of observation until they were applied to the column, though a large proportion of the available FPA was cleaved (maximum 45%). The soluble polymers in plasma were mostly of the high-Mr variety (tetramer and greater); these high-Mr polymers contained less than 2 mol of FPA/mol of polymer, whereas dimer and trimer in plasma were similar to those in the purified systems, i.e. 2 mol of FPA/mol.  相似文献   

19.
Guilbert C  Ricard F  Smith JC 《Biopolymers》2000,54(6):406-415
Conformational flexibility in the prion protein is believed to play a role in prion diseases. Here we examine the dynamic structure of the mouse cellular prion protein using two one-nanosecond molecular dynamics simulations from different initial conditions. The two simulations produce similar results. The overall structure remains close to that determined by nmr spectroscopy, with small deviations arising from loop fluctuation and slight changes in the relative helix positions. The sequence dependence of the fluctuation magnitudes is similar to the variation between the nmr-derived structure solutions. In both simulations, the N-terminal region of the protein forms a short, two-stranded beta-sheet, to which a third strand joins after approximately 100 ps. The additional strand may reflect nucleative properties of the beta-sheet required for disease-related prion conformational change.  相似文献   

20.
Prion protein (PrP) plays an important role in cell protection from oxidative stress due to its action as copper-chelating protein. The present study demonstrates that PrP participates in reductions of Cu2+ to Cu+ ions, and that this process results in fragmentation of protein. The interaction with phosphatidylinositol, a natural phospholipid moiety bound to PrP, strongly enhances recombinant PrP aggregation and degradation. The copper-dependent PrP degradation could promote the formation of amyloid structures, destabilizing the PrP soluble form by the cleavage of the N-terminal part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号