首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability of EDTA as a potential remediating agent. Parameters, including EDTA concentration, soil type, soil content, washing cycle, precipitant concentration and type, and pH, were varied and tested during metal extraction and recovery operations. Factors, including EDTA concentration, aqueous and 5% soil slurry, presence of Pb, acclimated and unacclimated activated sludges, along with abiotic control, were varied and studied in the biodegradation of EDTA. The results showed that EDTA was able to extract lead completely from the tested soils, amenable to recovery by addition of cationic and anionic precipitants in the alkaline pH range, relatively biostable even under conditions very favorable toward biodegradation. Thus, EDTA is a strong, recoverable, and relatively biostable chelating agent that has potential for soil remediation application.  相似文献   

2.
重金属污染土壤毒性的发光菌法诊断   总被引:13,自引:0,他引:13  
应用明亮发光杆菌T3(Photobacterium Phosthoreum)对重金属污染土壤的毒性进行诊断,确定了实验室中采用人为定量投加污染物的情况下,土壤的最佳平衡时间为24h,最佳浸提时间为2h,最佳浸提剂为0.1mol  相似文献   

3.
Malik  K.A.  Bilal  Rakhshanda  Mehnaz  Samina  Rasul  G.  Mirza  M.S.  Ali  S. 《Plant and Soil》1997,194(1-2):37-44
Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using N isotopic dilution were carried out in nutrient solution and saline soil. These studies indicated an agronomically significant amount of nitrogen being fixed in soil. Kallar grass has a similar growth habitat to rice. Therefore similar studies were carried out with rice after isolating various diazotrophs from the roots which were also screened for their ability to produce auxin (IAA). Five such strains namely Azospirillum lipoferum N-4, Azospirillum brasilense Wb-3, Azoarcus K-1, Pseudomonas 96-51, Zoogloea Ky-1 were selected for inoculating two rice varieties i.e. NIAB-6 and BAS-370 under aseptic laboratory conditions. The nitrogen fixed was quantified using the N isotopic dilution method. Variety BAS-370 had nearly 70% nitrogen derived from atmosphere (Ndfa) when inoculated with Azospirillum N-4. Similar studies with the mixed inoculum using N fertilizer in the micro plots indicated that nearly 29% of plant nitrogen was derived from the atmosphere.  相似文献   

4.
Abstract

Our objective in this study was to compare the growth of zinnia, Italian ryegrass, and alfalfa, and their remediation effects in oil-contaminated soils. The soils were prepared by mixing 2, 4, or 8% diesel oil by weight with soil. The plant height and dry weights of shoots and roots were highest for zinnia in the 2 and 4% oil treatments, and highest for Italian ryegrass in the 8% oil treatment. The reduction ratios in soil total petroleum hydrocarbons concentration (TPH) for 3 plants were lower in the 4 and 8% oil treatments than those in the 2% treatment. The reduction ratios for Italian ryegrass and zinnia contaminated with 2, 4, and 8% diesel oil treatments were significantly higher than those for alfalfa and the non-cultivation treatment at 45?days after sowing, and there were no significant differences in reduction ratios between Italian ryegrass and zinnia. The reduction ratio of soil TPH concentration brought about by zinnia was also comparable to that of Italian ryegrass. Therefore, we conclude that zinnia shows growth and remediation effects that are equivalent to those of Italian ryegrass, in soils contaminated with less than 8% oil.  相似文献   

5.
The effectiveness of an in situ heavy metals fixation technique aimed at converting contaminants to low solubility and low bioavail-ability forms, eliminating the risk posed by oxidic tailings and contaminated soils, was investigated. Calcium oxyphosphate salt (Ca(H2PO4)2·H2O) was used as a stabilizing agent for oxidic tailings and contaminated soils originating from Montevecchio, Sardinia, Italy. Stabilization was effected by mixing the contaminated soil or oxidic tailing sample with calcium oxyphosphate salt at various doses. The effectiveness of stabilization was evaluated by USEPA TCLP standard toxicity testing. Complementary EDTA extraction tests and biological tests using beans Phaseolous vulgaris as plant indicator were carried out. The toxicity of Pb and Cd was reduced below TCLP regulatory limits at calcium oxyphosphate doses higher than 0.7 and 0.2% w/w for soils and tailings, respectively. Lead solubility according to the EDTA test decreased with phosphate dose for both materials tested. Lead uptake by plant leaves and roots from the soil sample decreased with the phosphate addition, while Cd uptake remained almost constant. An adverse effect on plant growth and Zn uptake was observed for calcium oxyphosphate dose up to 1.1% w/w. Based on the results, a remediation scheme for oxidic tailings and contaminated soils is proposed.  相似文献   

6.
Phytoextraction is an economically and environmentally attractive in-situ method for cleaning heavy metal polluted soil. Phytoextraction is a rather slow process, but it can be enhanced by the application of chelating agents such as the synthetic ethylenediaminetetraacetic acid (EDTA). However, EDTA is persistent, toxic, and can promote heavy metal leaching. Replacement of EDTA by natural, non-toxic compounds such as humic substances (HS) or rhamnolipids (bacterial-produced biosurfactants) might be environmentally attractive but before recommending such alternatives, their suitability must be assessed. Therefore, compost-derived HS and rhamnolipids were compared with EDTA as natural non-toxic alternatives in a multi-step batch extraction test. The test included 10 steps carried out on two Cu and Zn polluted calcareous soils using a solution:soil ratio of 10 (L/kg). In each step, soil was extracted with an extractant containing EDTA, HS, or rhamnolipids corresponding to 250 mmol DOC/kg of soil (3 g C/kg). By HS extraction, each step resulted in the release of ~0.29 mg Cu/L and ~0.19 mg Zn/L, which is considered to enhance plant uptake without leading to unacceptable leaching and toxification of the plants (and the environment), suggesting HS can enhance phytoextraction. In contrast, the EDTA and the rhamnolipid treatments were found to be unsuitable because the EDTA released Cu and Zn in concentrations that may be toxic to plants and can lead to leaching, whereas the rhamnolipids showed insufficient capacity to mobilize Cu (and Zn). However, future investigations in the field are needed to confirm these laboratory results.  相似文献   

7.
Physicochemical and mineralogical properties of the contaminants should be taken into account to decide a remediation strategy for a given radionuclide because development and optimization of soil remedial technologies are based on physicochemical and mineralogical separation techniques. The objectives of this study are to (1) demonstrate how a priori physicochemical and mineralogical characterization of soil contaminants can direct the development of remediation strategies and their performance evaluation for soil treatments and (2) understand the nature of uranium contamination and its association with the soil matrix by chemical extractions. This study examined two U-contaminated sites (K311 and K1300) at the DOE K-25 site, presently located at East Tennessee Technology Park, Oak Ridge, Tennessee. Uranium concentrations of the soils ranged from 1499 to 216,413 Bq kg?1 at both sites. Scanning electron microscopy with backscattered electron spectroscopy and X-ray diffraction analysis showed that the dominant U phases are U oxides (schoepite), U-Ca-silicate (uranophane) and U silicate (coffinite) from the K311 site soils, whereas U-Ca-oxide and U-Ca-phosphate dominate in the K1300 site soils. Sodium carbonate/bicarbonate leaching was effective on the K1300 site soils, whereas citric acid leaching is effective on the K311 site soils. Sequential leaching showed that the majority of the uranium in the contaminated soils was contained in carbonate minerals (45%) and iron oxides (40%). Conventional leaching showed that citric acid treatment was most effective on the K311 site soils, whereas the sodium carbonate/ bicarbonate treatment was most effective on the K1300 site soils.  相似文献   

8.
Abstract

Column leaching using [S, S]-ethylene diamine disuccinate ([S, S]-EDDS) on copper tailing soils was carried out to investigate metal content and fractionation after leaching. The soil column was divided into four layers after leaching. Fractionation of Cu, Pb, Zn, and Mn in soil was analyzed using a modified BCR sequential extraction method. Metal contents (Cu, Pb, Ca, Mn) in soil layers increased with the depth of the soil column after leaching in the [S, S]-EDDS treatment. The cumulative extraction efficiency was approximately 43.1% for Cu, 26.8% for Zn, 19.5% for Pb, 10.5% for Ca, 2.07% for Mg, 58.5% for Mn, and 7.92% for Fe. The removal of the reducible fractions of Cu and Mn and the exchangeable fraction of Zn was the most significant in the treatment with [S, S]-EDDS. The exchangeable fraction of Pb was the main fraction that was affected by leaching using [S, S]-EDDS. Distribution of Cu and Mn were severely modified by leaching with [S, S]-EDDS. Percentages of residual fractions of the tested heavy metals in the treatment with [S, S]-EDDS after leaching were much higher than that in the control. Although column leaching using [S, S]-EDDS could remove target metals effectively and impaired their availability, it also dissolved large amounts of major elements and modified the distribution of Mn appreciably.  相似文献   

9.
The remediation efficiency of soils containing energetic materials (EM) is assessed using SW-846 USEPA Method 8330B. However, the extraction, which is performed by sonicating the soil samples in acetonitrile for several hours, could lead to additional degradation of EM during sample processing, and consequently, to an overestimation of remediation efficiency. To verify this, soil samples that were spiked with controlled amounts of EM were briefly exposed to remediation reagents, such as MuniRem® (a commercial sodium dithionite-based formulation) or hydrated lime, and analyzed using SW-846 USEPA Method 8330B. The most affected EM of this study was 2,4,6-trinitrotoluene (TNT), for which complete degradation was observed after exposure to hydrated lime or pH-buffered MuniRem®. Losses of 1,3,5-trinitro-1,3,5-triazinane (RDX) reached 30 ± 20% upon treatment with full pH-buffered MuniRem® and 90 ± 10% when exposed to lime. The concentrations of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were near the method’s lower limit of quantification, and subjected to large errors, which prevented us from drawing any clear conclusions regarding its degradation under the studied experimental conditions. These results highlight the necessity of performing appropriate soil sample treatments to quench the remaining hydrated lime or sodium dithionite prior to the extraction and analysis steps with SW-846 USEPA Method 8330B. Quenching of remaining remediation reagents may possibly be also required for other remediation reagents and EM.  相似文献   

10.
Aims: The aim of this paper is to check the effect of salinity on the bioremediation process of petroleum hydrocarbons in the saline‐alkaline soil. Methods and Results: In this study, soil salinity was adjusted to different levels by water leaching method and the bioremediation process was conducted for 28 days. Soil pH increased after leaching and decreased during bioremediation process. At initial time, moderate salinity enhanced the biodegradation and addition of microbial consortium was not effective in enhancing degradation rate of petroleum hydrocarbons. At day of 28 days, higher degradation rate was found in treatments with more leaching times with a maximum value of 42·36%. Dehydrogenase activity increased with the progress of bioremediation and positive correlation was found between dehydrogenase activity and degradation rate of petroleum hydrocarbons. Denaturing gradient gel electrophoresis analysis result showed decreased microbial community diversity with increased salt content. Conclusions: The result suggested that salinity had great impact on bioremediation, and leaching and addition of inoculated consortium were effective in enhancing biodegradation of petroleum hydrocarbons in the saline‐alkaline soil. Significance and Impact of the Study: The result of this study is important for understanding the bioremediation process of petroleum in contaminated soil. New remediation method of petroleum contaminated soil can be developed based on this study.  相似文献   

11.
We tested various fixation and analysis methods to demonstrate by electron microscopy elemental imaging in tissues and cells, i.e., soluble substances such as many kinds of ionic elements, water soluble low molecular peptides, and even organic solvent soluble substances such as lipids. For the ionic elements, we tested frozen dried or freeze-substituted methods and organic or inorganic special chemical precipitation methods combined with microwaved fixation methods. The data were analyzed with electron beam X-ray microanalysis, electron energy filtered imaging analysis, and electron microscope autoradiography. The data were demonstrated as elemental distribution images and were calculated quantitatively. For the soluble low molecular peptides, we developed a tannic acid and aldehyde method combined with microwaved fixation. We discuss the theoretical background of the tannic acid fixation and microwaved fixation methods. For the organic solvent soluble substances, i.e., lipids including steroids, we successfully tested the use of a mixed fixative of aldehyde and osmium, digitonization, and osmification with the use of p-phenylendiamine or imidazole. We also proposed some new ideal biotracers for electron beam X-ray microanalysis and electron energy filtered imaging analysis.  相似文献   

12.
Field and greenhouse experiments were performed to assess the performance of phytoremediation of arsenic and lead from contaminated soil at an EPA Superfund site (Barber Orchard). Chinese Brake ferns (Pteris vittata) were used to extract arsenic. On average, fern shoot arsenic concentrations were as high as 20 times the soil arsenic concentrations under field conditions. It was estimated that 8 years would be required to reduce the acid-extractable portion of soil arsenic to safe levels (40 mg/kg). The effect of soil pH on arsenic extraction was also investigated. Results indicate that increasing soil pH may improve arsenic removal. Indian mustard plants (Brassica juncea) were used under greenhouse conditions to phytoextract soil lead. EDTA was applied to soil and was found to improve lead extraction. When the EDTA concentration was 10 mmol EDTA/kg soil in soil containing 338 mg Pb/kg soil, mustard plants extracted approximately 32 mg of lead. In conclusion, phytoremediation would be a suitable alternative to conventional remediation techniques, especially for soils that do not require immediate remediation.  相似文献   

13.
This study assesses the use of ultrasonication to improve the extraction process of classical solvent extraction methods for extracting isoflavones from the kudzu roots waste. The kudzu roots waste was produced after squeezing fresh kudzu roots to make juice. The effects of extraction time, extraction temperature, ultrasonic power, and ethanol concentration in ethanol/water mixtures were investigated. The extraction yield was found to increase with extraction time and temperature. The application of ultrasonication-assisted extraction (UAE) increased the extraction yield of water/ethanol mixture (20:80) at 25°C 3 fold. A maximum amount (7.28 g) of isoflavone was obtained from 100 g of dried kudzu roots waste by UAE with water/ethanol mixture (20:80) for 6 h at 80°C. Combining the use of ultrasonication with conventional vacuum evaporation method also reduced the concentration time for extracts from 45 to 24 min.  相似文献   

14.
Degenhardt  Birgit  Gimmler  Hartmut  Hose  Elenor  Hartung  Wolfram 《Plant and Soil》2000,225(1-2):83-94
The distribution of the phytohormone abscisic acid (ABA) between plant and soil and within plants growing on an alkaline substrate has been studied in order to separate the true effect of high soil pH from any effects that might be a result of the high salinity normally observed in alkaline soils. Leaves of a range of plants grown in an alkaline and saline solid substrate (municipal solid waste incinerator bottom slag) exhibited higher ABA levels than leaves of control plants. In contrast, roots of most plants grown on alkaline and saline substrates, particularly those without an exodermis (various species of Fabaceae), had slightly lower than or comparable ABA contents to control roots. However, in corn roots (Zea maysL. cv. Garant FAO 240) which possess a well-developed exodermis, alkaline and saline conditions in the rhizosphere did not reduce the endogenous ABA concentration, because the leaching of ABA from corn roots into the rhizosphere was lower than that from Vicia faba (variety Dreifache Weisse) roots. ABA efflux from corn and Vicia roots into the soil solution was observed only during the first days of the experiments and thereafter became substantially decreased. Because the leaching of ABA from Vicia faba roots into the rhizosphere was higher than that from corn roots, the leaves of Vicia plants grown in alkaline soil at low salinity no longer exhibited an elevated ABA concentration. However, whilst the roots of corn plants grown on desalted slag retained ABA levels that were higher than those of the control, the ABA content of leaves was not significant higher than the controls. For this reason, root ABA retention must be enough to induce tolerance to alkalinity in corn plants and there is no need to implicate changes in ABA concentrations in the aerial parts of the plant as having a role in this tolerance. In alkaline soil substrates, considerable portions of the ABA synthesised in the roots leached out into the soil solution of the rhizosphere according to the anion trap concept. An exodermis substantially reduces this leakage. The transient nature of ABA efflux into the rhizosphere was a result of the fact that the salt stress itself was only a transient phenomenon due to a washout of salt by irrigation. The results match predictions of mathematical models describing the effect of alkaline pH on the distribution of abscisic acid within plants and between roots and the rhizosphere. Species that can retain root ABA in the face of its tendency to leach into the more alkaline compartment are able to tolerate these normally harmful sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.  相似文献   

16.
In-situ remediation is a practical approach to remediate soils contaminated with heavy metals. The MnFe2O4 microparticles (MM) were prepared for the in-situ remediation of contaminated soils from a lead–zinc polymetallic mine in Inner Mongolia province, China. The effects of MM dosage, pH on remediation efficiency, were determined with static vibration leaching experiment, and the release risk of heavy metals of treated soil was studied by column leaching experiment. The results showed that the leached Cu, Pb, Zn, and As concentration decreased drastically with increasing MM dosage, when the dosage was lower than 10 g/kg. Moreover, the decrease of pH caused increase of leached concentration of Cu, Pb, Zn, but slight decrease of leached As concentration. For the amended soil, concentrations of leached heavy metals were lower than Grade III limit of Chinese Environmental Quality Standards for Ground and Surface water (GB3838-2002) under simulated acid rain leaching condition. In comparison with non-amended soils, the total amount of Cu, Pb, Zn, and As release from amended soils was reduced by 93.6%, 69.2%, 57.0%, and 99.7%, respectively. The MM is a kind of promising amendment for heavy metals contaminated soil.  相似文献   

17.
Mitochondria were stained intensely by a Regaud iron-hematoxylin procedure for roots fixed in formalin-sublimate or in Helly's fluid. Formalin-sublimate fixation required iodization during the staining sequence, but roots fixed in Helly's fluid were best iodized to remove mercurial precipitates before embedding in paraffin. Both methods required treatment with 1% KOH before immersion in the staining solution to remove RNA and produce pale cytoplasm. A third successful method was to postosmicate methacrylate-embedded roots after fixation in Hermann's fluid. Blackened mitochondria were produced by the postosmication and further staining was unnecessary. Fixation in Regaud's fluid did not give successful stains in any of the three methods tested. A prefixation treatment in quinone did not aid in obtaining sharply stained mitochondria of roots fixed in Bouin's fluid and stained with Heiden-hain's iron-hematoxylin.  相似文献   

18.
Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.  相似文献   

19.
Phytoextraction is an emerging technology for non-destructive remediation of heavy metal-polluted soils. This study was conducted to test chelate-assisted phytoextraction of Cu, Pb and Zn using EDTA and canola (Brassica napus L. cv. Petranova) on a moderately polluted industrial soil (loamy sand) in the sub-continental climate of Eastern Austria. The effects of the rate (up to 2.1 g kg–1 soil) and mode (single versus split) of EDTA application on the biomass, water contents and metal concentrations in shoots and roots were investigated along with changes of metal lability in soil and leaching from the root zone in parallel outdoors pot and lysimeter experiments. Labile (1 M NH4NO3-extractable) metal concentrations in soil increased considerably upon application of EDTA, indicating enhanced phytoavailability. However, this was also associated with enormously increased metal concentrations in the leachates collected below the root zone. Enhanced metal labilities and leachate concentrations persisted for more than 1 year after harvest. Metal lability was more enhanced by EDTA in rhizosphere relative to bulk soil, indicating interactions of EDTA with root activities. Shoot biomass and water contents of canola were virtually unaffected by EDTA, revealing that canola can tolerate excessive metal concentrations in soil pore water. Metal concentrations in shoots were increased considerably, but were insufficient to obtain reasonable extraction rates. Split applications were generally more effective than the same amounts of EDTA added at once. Metal concentrations in roots decreased after each application of EDTA, possibly indicating metal removal from roots by free protonated EDTA, but increased again within several days. As the application of chelate-assisted phytoextraction is limited by the risk of groundwater pollution, further work should focus on natural, continuous phytoextraction technologies.  相似文献   

20.
【目的】土壤重金属污染问题日益受到关注,其中钒污染逐渐成为研究热点。淋洗是土壤修复的重要手段,但存在污染大、成本高的缺点。生物淋洗技术因其经济高效且环保的特点能够应用于土壤的修复,但其对钒污染土壤的修复,认识仍非常有限。【方法】本研究采用嗜酸性氧化亚铁硫杆菌对钒污染土壤进行了生物淋洗试验,通过影响因素试验探究了钒的最佳浸出条件,并应用扫描电子显微镜-能量色散X射线谱分析了钒在淋洗过程中的变化,最后对代谢产物进行了解析。【结果】微生物次生代谢产物能促进土壤中钒的溶出。氧化亚铁硫杆菌对土壤钒的浸出效率较高,生物淋洗20 d后土壤中钒的浸出率达到27.4%,进一步的影响因素试验表明,在固体浓度为3%、接种体积为10%、初始pH值为1.8、初始Fe2+的浓度为3.0 g/L的条件下,土壤中钒的浸出效果最佳。SEM-EDS分析证实生物淋洗后土壤中钒含量减少,其中以非残渣态形式存在的钒更容易被浸出。代谢组学分析显示氧化亚铁硫杆菌在浸出过程中产生了大量代谢产物来应对重金属胁迫。【结论】生物淋洗技术能够有效地实现土壤钒污染的修复,本研究为钒污染土壤提供了一种环境友好的修复方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号