首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP), potassium phosphate monobasic (MPP), calcium superphosphateon (SSP), and calcium phosphate tribasic (TCP), in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a) the reduction of extractable Cd concentration below the TCLP regulatory level and (b) the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control) to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd) increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1.  相似文献   

2.
Synthetic chelators play an important role in boosting the microbial biomass carbon (MBC), dissolved organic carbon (DOC), and heavy metal solubility in a contaminated soil toward a sustainability of environment for agricultural crops. Castor plant was grown under different levels of Cd contaminated soil (?Cd and +Cd) following adding three chelating agents, ethylenediaminetetraacetic acid (H4EDTA), nitriloacetic acid (H3 NTA), and NH4 citrate (ammonium citrate) to the soil at rates of 10, 15, and 25 mmol in 5 kg of soil per pot. The highest bioavailable Cd concentrations in soil and castor plant were obtained from NH4 citrate and H4EDTA treatments in the contaminated soil. Fourier transform infrared (FTIR) analysis showed that NH4 citrate was the most effective chelator in Cd-contaminated soil. MBC and DOC contents were significantly increased and reached at 81.98–80.37 and 1.96–1.90 mg kg?1 respectively, in the (H3 NTA) and NH4 citrate treatments in Cd-contaminated soil. Further research is needed to investigate the use of chelators in the phytoextraction of Cd-contaminated soils under field conditions and whether it may be beneficial in accelerating the phytoextraction of Cd through hyperaccumulating plants.  相似文献   

3.
Chemical fractionation methods may be capable of providing an inexpensive estimate of contaminant bioavailability and risk in smelter-contaminated soil. In this study, the relationship between metal fractionation and methods used to estimate bioavailability of these metal contaminants in soil was evaluated. The Potentially BioAvailable Sequential Extraction (PBASE) was used for Cd, Pb, and Zn fractionation in 12 soils contaminated from Pb and Zn mining and smelting activities. The PBASE procedure is a four-step sequential extraction: extraction 1 (E1) is 0.5 M Ca(NO3)2, E2 is 1.0 M NaOAc, E3 is 0.1 M Na2EDTA, and E4 is 4 M HNO3. Metal bioavailability for two human exposure pathways, plant uptake (phytoavailability) and incidental ingestion (gastrointestinal, Gl, availability), was estimated using a lettuce (Lactuca sativa L.) bioassay and the in vitro-Gl Physiologically Based Extraction Test(PBET). Metal in the PBASE E1 fraction was correlated with lettuce Cd (P < 0.001) and Zn (P < 0.05) and was the best predictor of Cd and Zn phytoavailability. Only total metal content or the sum of all PBASE fractions, ΣE1–4, were correlated (P < 0.001) with PBET gastric phase for Pb. The sum of the first two PBASE fractions, ΣE1–2, was strongly correlated (P < 0.001) with Pb extracted by the PBET intestinal phase. The PBASE extraction method can provide information on Cd and Zn phytoavailability and Gl availability of Pb in smelter-contaminated soils.  相似文献   

4.
Abstract

Phytoremediation with vetiver was investigated in relation to heavy metal contaminated soil in Thailand. The work compared the performance of two species of vetiver named Songkhla 3 (Chrysopogon zizaniodes) and Prachuap Khiri Khan (Chrysopogon nemoralis) in absorbing lead, zinc, and cadmium in contaminated soils. Toxicity Characteristic Leaching Procedure (TCLP), and Allium tests were conducted to determine toxicity of treated soil. Ethylenediaminetetraacetic acid (EDTA) was also used to increase heavy metals concentration in solution in soil, which led to an increase in translocation and bioaccumulation factors. In general, results showed that concentration of heavy metals decreased in soil and increased in both the shoots and roots of vetivers during a 4-month treatment period. TCLP results indicated that the concentration of zinc and cadmium in contaminated soil was reduced over treatment time, and significantly increased after EDTA was applied. To confirm vetiver performance in phytoremediation, Allium testing showed that remained heavy metals in treated soils had no effect on nucleus aberration. Songkhla 3 and Prachuap Khiri Khan showed similar trends in their ability to remediate lead, zinc, and cadmium from contaminated soil. Both species could accumulate higher concentrations of heavy metals in their shoots and roots over time, and with EDTA application.  相似文献   

5.
Oxalate (Ox) was used to extract Pb and Zn from industrially contaminated soils. Although Ox effectively releases metals bound by hydrous oxide soil components, it forms insoluble salts with some heavy metals unlike conventional extractants (e.g., EDTA). The insolubility of PbOx(s) (Ksp=2.74 × 10?11) precluded the use of Ox as a single-step extractant even for soils mildly contaminated with Pb. The usefulness of Ox as a Zn extractant, however, depends on the level of soil contamination. A Zn solubility model, based on published equilibrium constants, was developed to assess Ox suitability as a function of system conditions. Precipitation of ZnOx(s) hindered Zn recovery under acidic conditions where formation of soluble oxalato complexes was small. For pH<3, the presence of 1?M Ox actually reduced Zn release compared to simple acid washing. Although Ox displaces oxide-bound metals and thus is potentially useful in soil washing, solubility limitations must be defined for effective remediation of metal-laden soils.  相似文献   

6.
We have used the solid‐phase MetPLA TE, an enzyme assay that is specific for heavy‐metal toxicity, to investigate metal toxicity of soils that have been amended with urban wastewater sludges or contaminated with dry deposition from metal‐plating industries. We have shown that soil toxicity, using MetPLA TE, ranged from 21 to 72.5% inhibition of enzyme activity. Evin soil, which displayed the highest toxicity, also had the highest concentrations of Pb and Zn. Metal uptake studies with ryegrass grown on Evin soil, showed Zn, Cd, and Pb accumulation in the plant that exceeds the standard levels reported for grasses

Solid‐phase MetPLA TE was also used as a tool to study the reduction of heavy‐metal toxicity following soil amendments to immobilize metals in soil and thus reduce their toxicity. It was found that the addition of 1% hydrated manganese oxide significantly reduced dissolved metals in soil, their accumulation by ryegrass, and soil toxicity as shown by MetPLA TE.  相似文献   


7.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

8.
Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg?1) without or with PCP (0, 50, and 250 mg kg?1) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.  相似文献   

9.
Eight lead-contaminated soils and one background soil artificially contaminated with several lead compounds were examined to determine the factors that limit lead extractability and thus plant availability during phytoremediation, as lead must be in soluble form for plant uptake to occur. The effect of the chemical form of the lead as well as the association of the lead among the different soil chemical fractions on lead extractability was specifically addressed. Results indicate that all the added lead forms tested except PbCrO4 were readily extracted and believed to be available for plant uptake, operationally defined as EDTA-extractable lead, as EDTA is the primary soil amendment for phytoremediation of lead-contaminated soils. Sequential extraction of the eight lead-contaminated soils that previously had been extracted with EDTA shows that the EDTA-extractable or plant available lead corresponds to mainly the exchangeable and carbonate fractions of each soil. Lead associated with oxide, organic, and residual fractions were less effectively targeted and solubilized by EDTA and therefore are not as readily available for plant uptake. Attempts to increase the available pool of soluble lead included the combination of EDTA with organic acids, reducing agents, and surfactants. Results from these studies indicate that high concentrations or extremely low pH conditions are required to enhance the plant available pool of lead by the organic acids and reducing agents. Surfactants, particularly caprylic acid in combination with 0.25 mM EDTA, were shown to be as effective as 0.50 mM EDTA alone. An amendment formulation combining less EDTA with surfactants is attractive for phytoremediation because of the biodegradability and cost concerns commonly associated with using larger amounts of EDTA.  相似文献   

10.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

11.

Background and aims

Chelant-enhanced phytoextraction has given variable and often unexplained experimental results. This work was carried out to better understand the mechanisms of Cd plant uptake in the presence of EDTA and to evaluate the contributions of Cd-EDTA complexes to the uptake.

Method

A 1-D mechanistic model was implemented, which described the free Cd2+ root absorption, the dissociation and the direct absorption of the Cd-EDTA complexes. It was used to explain Cd uptake by maize in hydroponics and in soil.

Results

In hydroponics, the addition of EDTA caused a decrease in Cd uptake by maize, particularly when the ratio of total EDTA ([EDTA] T ) to total Cd ([Cd] T ) was greater than 1. At [Cd] T = 1 μM, when [EDTA] T /[Cd] T < 1, the model indicated that Cd uptake was predominantly due to the absorption of free Cd2+, whose pool was replenished by the dissociation of Cd-EDTA. When [EDTA] T /[Cd] T > 1, the low Cd uptake was mostly due to Cd-EDTA absorption. In soil spiked with 5 mg Cd kg?1, Cd uptake was not affected by the various EDTA additions, because of the buffering capacity of the soil solid phase.

Conclusions

Addition of EDTA to soil increases Cd solubility but dissociation of Cd-EDTA limits the availability of the free Cd2+ at the root surface, which finally reduces the plant uptake of the metal.  相似文献   

12.
In this study, a combined system of soil washing and electrodeposition was designed to remove Pb (16381±643 mg/kg) and Cd (34347±1310 mg/kg) from contaminated soil. 0.05 M Na2EDTA was used as a chelating agent for the remediation of soil, taken from the nearby city Kayseri, Turkey. As a result of the batch extraction tests, maximum removals were determined as; at the 20:1 liquid: soil ratio for Pb is 60.7%, for Cd at the 30:1 liquid: soil ratio is 67.4%. An electrochemical treatment was applied to the waste washing solution which appeared to be the second pollutant after the Na2EDTA extraction from the soil. With extraction tests of Pb and Cd, being transformed from the solid phase to the liquid phase. The electrochemical treatment (electrodeposition), performed in three different potential (6 V, 8 V and 10 V) and maximum removal efficiencies, were found 99.7% and 80.3% at 10 V for Pb and Cd, respectively.

Speciation tests (BCR) were carried out, both before and after the soil washing process, to evaluate the redistribution of metal fraction in the soil. The fraction, associated with the organic substance, was found as 10.67% for Pb and 1.81% for Cd. The metal bioavailability factor increased after soil washing, which indicates that EDTA could enhance the mobility of Pb and Cd.  相似文献   


13.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

14.
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.  相似文献   

15.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

16.
Iretskaya  S.N.  Chien  S.H.  Menon  R.G. 《Plant and Soil》1998,201(2):183-188
Little information is available in literature on Cd uptake by crops from either phosphate rock (PR) or partially acidulated PR (PAPR). The purpose of this greenhouse experiment was to study the effect of acidulation of two PRs having high Cd content (highly reactive North Carolina PR and low-reactive Togo PR) on Cd uptake by upland rice. The degrees of acidulation with H2SO4 were 100% for North Carolina PR (NC-single superphosphate [SSP]) and 50% or 100% for Togo-PR (i.e., Togo PAPR or Togo-SSP). Separation of the confounding effect between P uptake and Cd uptake from various P sources was made by adding 200 mg P/kg as KH2PO4 to all the treatments. Rates of Cd added from various P sources were 50–400 µg Cd/kg. Upland rice (Oryza sativa L.) was grown on two acid soils (Hartsells, pH 5.0 and Waverly, pH 5.6) to maturity.The results show that Cd uptake by rice grains followed the order of NC-SSP> NC-PR and Togo SSP> Togo PAPR> Togo PR. The results also showed that most of the Cd uptake was retained in rice roots and straw. Total uptake of Cd, Ca, and P by rice plant (root, straw, and grain) was higher from NC-PR than from Togo-PR. Cd concentration in rice grains showed no significant difference between NC-PR and Togo-PR, whereas Cd concentrations in root and straw were higher with NC-PR than that with Togo-PR. There was a significant relationship between total Cd uptake by rice plant and Cd extracted by DTPA from soils treated with various P sources at 400 µg Cd/kg.  相似文献   

17.
Sayed  W. F. 《Plant and Soil》2003,254(1):19-25
Phytoextraction of Cd by some populations of Thlaspi caerulescens which have the ability to co-hyperaccumulate Cd and Zn requires information about the distribution of both metals within the plant at the organ-level. This work was conducted to determine whether the distribution and solubility of Cd and Zn in Thlaspi caerulescens are affected by the age of plant and organ, and whether Cd and Zn have a common distribution in the plant in soils contaminated by both metals. A series of pot experiments were conducted where a Cd- and Zn-hyperaccumulating population was grown on soils contaminated by Cd and Zn. Temporal changes in metal concentration of roots and of shoots was recorded, along with the water and CaCl2 solubility of metals in the plant organs. Also, leaves were grouped according to their age and their respective content of Cd and Zn was measured. Both metals were present at higher concentrations in leaves than in roots. The whole-plant content of Zn decreased with time while that of Cd increased or remained unchanged. At harvest, young leaves exhibited higher Cd concentration than older, but the reverse was true for Zn. Both metals were more soluble in dry leaves and senescent leaves than in fresh material, and Zn was more water-soluble than Cd. In conclusion, the distribution of Cd and Zn in the hyperaccumulator T. caerulescensvaried according to the organ and plant age, and Cd and Zn were shown to have a different distribution within the plant.  相似文献   

18.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

19.
Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine 134Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in 134Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the 134Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in 134Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the 134Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil.  相似文献   

20.
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号