首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C-O distance <1.3 A). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IV H740Q bound saxagliptin with an approximately 1000-fold reduction in affinity relative to DPP-IV WT, while DPP-IV S630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme-saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at approximately 14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme-inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.  相似文献   

2.
K Brady  T C Liang  R H Abeles 《Biochemistry》1989,28(23):9066-9070
The effects of pH on the kinetics of association and dissociation of chymotrypsin and the dipeptidyl trifluoromethyl ketone (TFK) N-acetyl-L-leucyl-L-phenylalanyltrifluoromethane (1) were examined through the pH range 4-9.5. The pH dependence of the association rate (kon) is similar to that of kcat/Km for ester and peptide substrates and is dependent on two pK's at 7.0 and 8.9. We assign these pK's to the active site His and to the amino group of the N-terminal isoleucine residue. Ki for the complex of 1 and chymotrypsin has a pH dependence very similar to that of kon, and we conclude that the same ionizable groups which determine the pH dependence of kon are involved. The dissociation constant of the enzyme-inhibitor complex (koff) shows no pH dependence between pH 4 and pH 9.5. The data indicate that the inhibitor reacts with a form of the enzyme in which His 57 is unprotonated, and the resulting complex contains no groups which ionize between pH 4 and pH 9.5. This is consistent with conclusions previously reached from NMR data (Liang & Abeles, 1987). These experiments led to the conclusion that 1 reacts with chymotrypsin to form a tetrahedral complex in which His 57 is protonated (pK greater than 9.5) and the OH group of serine 195 has added to the carbonyl group of 1 to form an ionized hemiketal (pK less than 4.9). The pK of His 57 is increased by greater than 3 units over that in the free enzyme, and the pK of the hemiketal decreased by greater than 4 units compared to the pK in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Modifications at the 2'-position of the nicotinamide-ribosyl moiety influence dramatically the nature of the interactions of the modified beta-NAD+ with calf spleen NAD+ glycohydrolase (EC 3.2.2.6), an enzyme that cleaves the nicotinamide-ribose bound in NAD(P)+. Nicotinamide arabinoside adenine dinucleotide (ara-NAD+) and nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide (araF-NAD+) are not hydrolyzed at measurable rates and are the first documented examples of reversible slow binding inhibitors of this class of enzyme. The kinetic data obtained are consistent with both slow kon and koff rate constants in the formation of an enzyme-inhibitor complex, i.e. the association rate constants are about 10(4) and 10(6) slower than diffusion rates, respectively, for araF-NAD+ and ara-NAD+, and the half-life of the complex is about 3-10 min for both analogues. The kinetic model does not account for a slow turnover of an ADP-ribosyl-enzyme intermediary complex. AraF-NAD+ is one of the most potent inhibitors described for NAD+ glycohydrolase.  相似文献   

4.
K N Allen  R H Abeles 《Biochemistry》1989,28(1):135-140
The kinetics of substrate hydrolysis by pig liver esterase show activation by various substrates as well as activation by organic solvents (both Vmax and Km increase) [Barker, D.L., & Jencks, W.P. (1969) Biochemistry 8, 3890]. The trifluoromethyl ketones 1,1,1-trifluoro-4-phenylbutan-2-one (TPB) and 1,1,1-trifluoro-4-(p-hydroxyphenyl)butan-2-one (OH-TPB) are slow, tight binding inhibitors of pig liver esterase with Ki values of 6.8 X 10(-9) M and 6.0 X 10(-9) M, respectively. Acetonitrile, TPB, and OH-TPB as well as the substrates pNPA and ethyl lactate caused a 15-130-fold increase in the rate of association (kon), and dissociation (koff), of the enzyme--TPB complex. The value of Ki (koff/kon) did not change. The effect cannot be attributed to half-sites reactivity since an increase in koff of OH-TPB is also observed with enzyme monomers. The results are consistent with a model proposed for the catalytic reaction (Barker & Jencks, 1969) which invokes two binding sites on each esterase subunit, a catalytic site and an effector site. Occupation of the effector site can increase koff and kon for the inhibitors TPB and OH-TPB. Not all compounds which bind at the effector site increase koff. Butanol binds at the effector site but does not effect koff of TPB. The results also indicate that an aromatic or a hydrophobic structure and a carbonyl group are required for optimal interaction with the effector site.  相似文献   

5.
The primary kinetic isotope effect of the reaction catalyzed by NAD+-dependent formate dehydrogenase (EC 1.2.1.2.) from the methylotrophic bacterium Pseudomonas sp. 101 has been studied. Analysis of the ratios HVm/DVm and H(Vm/KM)/D(Vm/KM) in the pH range 6.1-7.9 showed that the transfer of hydride ion in ternary enzyme-substrate complex is a limiting step of the reaction, and the formate binding to the binary complex (formate dehydrogenase + NAD+) reached equilibrium when the pH of the medium was increased. An approach has been developed to determine the elementary constants of substrate association (kon) and dissociation (koff) at the stages of the binary--ternary enzyme-substrate complexes for the random equilibrium 2-substrate kinetic mechanism. The kon and koff values obtained for the bacterial formate dehydrogenase by using the proposed approach for NAD+ were (4.8 +/- 0.8)*10(5)M-1s-1 and (90 +/- 10) s-1, and for formate (2.0 +/- 1.0)*10(4) M-1s-1 and (60 +/- 20) s-1, respectively.  相似文献   

6.
A modified cytochrome c peroxidase was prepared by reconstituting apocytochrome c peroxidase with protoheme in which both heme propionic acid groups were converted to the methyl ester derivatives. The modified enzyme reacted with hydrogen peroxide with a rate constant of (1.3 +/- 0.2) x 10(7) M-1 s-1, which is 28% that of the native enzyme. The reaction between the modified enzyme and hydrogen peroxide was pH-dependent with an apparent pK of 5.1 +/- 0.1 compared to a value of 5.4 +/- 0.1 for the native enzyme. These observations support the conclusion that the apparent ionization near pH 5.4, which influences the hydrogen peroxide-cytochrome c peroxidase reaction is not due to the ionization of the propionate side chains of the heme group in the native enzyme. A second apparent ionization, with pK of 6.1 +/- 0.1, influences the spectrum of the modified enzyme which changes from a high spin type at low pH to a low spin type at high pH.  相似文献   

7.
Hemopexin (HPX), serving as scavenger and transporter of toxic plasma heme, has been postulated to play a key role in the homeostasis of NO. Here, kinetics of HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO are reported. NO reacts reversibly with HPX-heme(II) yielding HPX-heme(II)-NO, according to the minimum reaction scheme: HPX-heme(II)+NO kon<-->koff HPX-heme(II)-NO values of kon, koff, and K (=kon/koff) are (6.3+/-0.3)x10(3)M-1s-1, (9.1+/-0.4)x10(-4)s-1, and (6.9+/-0.6)x10(6)M-1, respectively, at pH 7.0 and 10.0 degrees C. O2 reacts with HPX-heme(II)-NO yielding HPX-heme(III) and NO3-, by means of the ferric heme-bound peroxynitrite intermediate (HPX-heme(III)-N(O)OO), according to the minimum reaction scheme: HPX-heme(II)-NO+O2 hon<--> HPX-heme(III)-N(O)OO l-->HPX-heme(III)+NO3- the backward reaction rate is negligible. Values of hon and l are (2.4+/-0.3)x10(1)M-1s-1 and (1.4+/-0.2)x10(-3)s-1, respectively, at pH 7.0 and 10.0 degrees C. The decay of HPX-heme(III)-N(O)OO (i.e., l) is rate limiting. The HPX-heme(III)-N(O)OO intermediate has been characterized by optical absorption spectroscopy in the Soret region (lambdamax=409 nm and epsilon409=1.51x10(5)M-1cm-1). These results, representing the first kinetic evidence for HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO, might be predictive of transient (pseudo-enzymatic) function(s) of heme carriers.  相似文献   

8.
Human muscle adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3.) was studied by 1H-nuclear magnetic resonance spectroscopy. The C-2 and C-4 proton resonances of the active-center histidine His-36 could be identified; the pK of His-36 was determined as 6.1. The pK of His-189 is very low (4.9) although it is located at the surface of the protein. Other resonance lines are discussed in comparison with NMR spectra of porcine adenylate kinase [McDonald et al. (1975) J. Biol. Chem. 250, 6947-6954]. A pH-dependent structural isomerization as shown by X-ray crystallography in the pig enzyme [Pai et al. (1977) J. Mol. Biol. 114, 37-45] was not observed for human adenylate kinase in solution. However, the binding of adenosine(5')pentaphospho(5')adenosine (Ap5A), a bisubstrate inhibitor, to adenylate kinase causes an overall change of the NMR spectrum indicative of a large conformational change of the enzyme. The exchange rate (koff) for Ap5A was estimated as 10 s-1 and decreases by addition of Mg2+. On the basis of these values and the known dissociation constant it is likely that the binding of Ap5A is a diffusion-controlled process kon being 10(8) M-1 s-1. In conclusion, the system Ap5A/Mg2+/human adenylate kinase, which has been studied by NMR spectroscopy and X-ray diffraction in parallel, is suitable for analyzing the induced fit postulated by Jencks for all kinase-catalyzed reactions.  相似文献   

9.
A pH-variation study of jack bean (Canavalia ensiformis) urease steady-state kinetic parameters and of the inhibition constant of boric acid, a urease competitive inhibitor, was performed using both noninhibitory organic (MES, HEPES and CHES) and inhibitory inorganic (phosphate) buffers, in an effort to elucidate the functions exercised in the catalysis by the ionizable groups of the enzyme active site. The results obtained are consistent with the requirement for three groups utilized by urease with pK(a)s equal to 5.3+/-0.2, 6.6+/-0.2 and 9.1+/-0.4. Based on the appearance of the ionization step with pK(a)=5.3 in v(max)-pH, K(M)-pH and K(i)-pH profiles, we assigned this group as participating both in the substrate binding and catalytic reaction. As shown by its presence in v(max)-pH and K(M)-pH curves, the obvious role of the group with pK(a)=9.1 is the participation in the catalytic reaction. One function of the group featuring pK(a)=6.6, which was derived from a two-maxima v(max)-pH profile obtained upon increasing phosphate buffer concentration, an effect the first time observed for urease-phosphate systems, is the substrate binding, another possible function being modulation of the active site structure controlled by the ionic strength. It is also possible that the pK(a)=6.6 is a merger of two pK(a)s close in value. The study establishes that regular bell-shaped activity-pH profiles, commonly reported for urease, entail more complex pH-dependent behavior of the urease active site ionizable groups, which could be experimentally derived using species interacting with the enzyme, in addition to changing solution pH and ionic strength.  相似文献   

10.
The nature of the interaction between Escherichia coli cytidine deaminase and the phosphapyrimidine nucleoside 1 has been studied kinetically and spectrophotometrically. Compound 1 was designed as a transition-state analog, and is a potent, slow-binding inhibitor of cytidine deaminase (Ashley, G. W., and Bartlett, P. A. (1982) Biochem. Biophys. Res. Commun. 108, 1467-1474). We present evidence that the binding of 1 is reversible, with no covalent linkage between the enzyme and 1. At pH 6, the rate of recovery of enzyme activity from dissociation of the E X I complex is strongly dependent on the concentration of E X I, indicating that the inhibitor dissociates reversibly. UV difference spectroscopy reveals that the chromophore of 1 is unaltered on binding to the enzyme, thus eliminating the possibility of reversible, covalent modification of the enzyme. For the binding of the active beta-anomers of 1 to cytidine deaminase, the following kinetic parameters were determined at pH 6: kon = 8300 M-1 S-1, koff = 7.8 X 10(-6) S-1, Ki = 0.9 nM. We were also able to observe and characterize time-dependent inhibition of E. coli cytidine deaminase by tetrahydrouridine, 3. This interaction involves involves initial formation of a loose complex (KD = 1.2 microM), followed by isomerization in a slow step to give a more tightly bound complex (Ki = 0.24 microM) with forward and reverse rate constants kf = 3.81 min-1 and kr = 0.95 min-1, respectively.  相似文献   

11.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

12.
Upon incubation of antithrombin III with thrombin in the presence of a monoclonal antibody recognizing an epitope exposed on the heavy chain part of thrombin-cleaved two-chain antithrombin III, antithrombin III was preferentially cleaved by the enzyme as a substrate, rather than covalently complexed with the enzyme to form an equimolar, stable acyl complex. Once the stable acyl complex was formed between the enzyme and antithrombin III, however, no further liberation of two-chain antithrombin III was observed. Kinetic studies showed that heparin does not affect this reaction, although generation of thrombin-cleaved two-chain antithrombin III is apparently accelerated in accordance with the rate constant for heparin-enhanced thrombin-antithrombin III complex formation. Here we propose the term "switching antibody" for an antibody that triggers deacylation of an intermediate enzyme-inhibitor complex by switching the enzyme-inhibitor reaction from the major pathway of stable acyl complex formation to an alternative pathway of cleavage of the inhibitor as a substrate.  相似文献   

13.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

14.
Fedosova NU  Esmann M 《Biochemistry》2007,46(31):9116-9122
Investigation of the ionic strength effect on the interactions between nucleotides (ATP and ADP) and Na,K-ATPase in a broad pH range was aimed at revealing pK values of the charged groups of the interacting species. Ionic strength experiments suggested that an amino acid residue with a pK > 8.0 is part of the protein binding site. A combination of equilibrium and transient experiments at various pH values allowed for the characterization of the groups electrostatically involved in either the association process (kon) or the stability of the preformed complexes (koff). Two groups (pK1 = 6.7 and pK2 = 8.4) appear to be important for the proper organization of the binding site and, therefore, the association reaction. Moreover, deprotonation of the basic group completely precludes association. pH dependencies of the dissociation rate constants for ATP and ADP are very different. An increase in pH from 5 to 9.5 induces a 9-fold increase in koff for ATP, whereas koff for ADP decreases 4-fold between pH 5 and 8, and decreases further in the alkaline region. A comparison of the pH dependencies for koff for ATP and ADP suggests two effects: (1) at acidic pH, the value of the total negative charge of the nucleotide determines the tightness of binding; and (2) short-range interactions involving the terminal phosphate group are important for nucleotide dissociation from the site. The difference in the pH dependencies of koff for the nucleotides suggests the existence of positive charges in close proximity to Asp369, relieving the repulsion between the gamma-phosphate of ATP and Asp369.  相似文献   

15.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

16.
Direct observation of the tetrahedral intermediate in the EPSP synthase reaction pathway was provided by 13C NMR by examining the species bound to the enzyme active site under internal equilibrium conditions and using [2-13C]PEP as a spectroscopic probe. The tetrahedral center of the intermediate bound to the enzyme gave a unique signal appearing at 104 ppm. Separate signals were observed for free EPSP (152 ppm) and EPSP bound to the enzyme in a ternary complex with phosphate (161 ppm). These peak assignments account for our quantitation of the species bound to the enzyme and liberated upon quenching with either triethylamine or base. A comparison of quenching with acid, base, or triethylamine was conducted; the intermediate could be isolated by quenching with either triethylamine or 0.2 N KOH, allowing direct quantitation of the species bound to the enzyme. After long times of incubation during the NMR measurement, a signal at 107 ppm appeared. The compound giving rise to this resonance was isolated and identified as an EPSP ketal [Leo et al. (1990) J. Am. Chem. Soc. (in press)]. The rate of formation of the EPSP ketal was very slow, 3.3 X 10(-5) s-1, establishing that it is a side product of the normal enzymatic reaction, probably arising as a breakdown product of the tetrahedral intermediate. A slow formation of pyruvate was also observed and is attributable to the enzymatic hydrolysis of EPSP, with 5% of the enzyme sites occupied by EPSP and hydrolyzing EPSP at a rate of 4.7 X 10(-4) s-1. To look for additional signals that might arise from a covalent adduct which has been postulated to arise from reaction of enzyme with PEP, an NMR experiment was performed with an analogue of S3P lacking the 4- and 5-hydroxyl groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
There is marked pH dependence of the rate constant (koff) for tetrahydrofolate (H4folate) dissociation from its ternary complex with human dihydrofolate reductase (hDHFR) and NADPH. Similar pH dependence of H4folate dissociation from the ternary complex of a variant of hDHFR with the substitution Phe31----Leu (F31L hDHFR) causes this dissociation to become rate limiting in the enzyme mechanism at pH approximately 5, and this accounts for the marked decrease in kcat for this variant as the pH is decreased from 7 to 5. This decreased kcat at low pH is not seen for most DHFRs. koff for dissociation of folate, dihydrofolate (H2folate), and H4folate from their binary complexes with hDHFR is similarly pH dependent. For all the complexes examined, the pH dependence of koff in the range pH 5-7 is well described by a pKa of about 6.2 and must be due to ionization of a group on the enzyme. In the higher pH range (7-10), koff increases further as the pH is raised, and this relation is governed by a second pKa which is close to the pKa for ionization of the amide group (HN3-C4O) of the respective ligands. Thus, ionization of the ligand amide group also increases koff. Evidence is presented that the dependence of pH on koff for hDHFR accounts for the shape of the kcat versus pH curve for both hDHFR as well as its F31L variant and contributes to the higher efficiency of hDHFR compared with bacterial DHFR.  相似文献   

18.
The rate constants for the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis were determined by using a pre-steady-state kinetic approach. kon and koff for complex-formation and dissociation were 1 X 10(6)M-1 X S-1 and 8 X 10(-4)S-1 respectively. Ki was calculated as the ratio koff/kon = 8 X 10(-10)M, the binding of eglin to elastase was reversible and the inhibition mechanism was of the fully competitive type. The mechanistic properties of the system and the biological significance of the rate constants are discussed.  相似文献   

19.
Two ORFs encoding a protein related to bacterial dimethylglycine oxidase were cloned from Pyrococcus furiosus DSM 3638. The protein was expressed in Escherichia coli, purified, and shown to be a flavoprotein amine dehydrogenase. The enzyme oxidizes the secondary amines L-proline, L-pipecolic acid and sarcosine, with optimal catalytic activity towards L-proline. The holoenzyme contains one FAD, FMN and ATP per alphabeta complex, is not reduced by sulfite, and reoxidizes slowly following reduction, which is typical of flavoprotein dehydrogenases. Isolation of the enzyme in a form containing only FAD cofactor allowed detailed pH dependence studies of the reaction with L-proline, for which a bell-shaped dependence (pK(a) values 7.0 +/- 0.2 and 7.6 +/- 0.2) for k(cat)/K(m) as a function of pH was observed. The pH dependence of k(cat) is sigmoidal, described by a single macroscopic pK(a) of 7.7 +/- 0.1, tentatively attributed to ionization of L-proline in the Michaelis complex. The preliminary crystal structure of the enzyme revealed active site residues conserved in related amine dehydrogenases and potentially implicated in catalysis. Studies with H225A, H225Q and Y251F mutants ruled out participation of these residues in a carbanion-type mechanism. The midpoint potential of enzyme-bound FAD has a linear temperature dependence (- 3.1 +/- 0.05 mV x C degrees (-1)), and extrapolation to physiologic growth temperature for P. furiosus (100 degrees C) yields a value of - 407 +/- 5 mV for the two-electron reduction of enzyme-bound FAD. These studies provide the first detailed account of the kinetic/redox properties of this hyperthermophilic L-proline dehydrogenase. Implications for its mechanism of action are discussed.  相似文献   

20.
Phenylhydrazine treatment induced hydroxymethylbilane synthase activity (EC 4.3.1.8) in rat spleen, erythrocytes and liver by 40-fold, 7.5-fold and 6-fold respectively. Five multiple forms of the enzyme were resolved by DEAE-cellulose chromatography. In the presence of phenylmethanesulphonyl fluoride only three forms, two major and one minor, were resolved by the fractionation, suggesting that two of the original forms arose by proteolytic modification. Heat treatment (70 degrees C) in the presence of proteinase inhibitor converted one of the major forms into the other major form. Product isomer analysis suggested that this heat-labile form represented an enzyme-substrate covalent intermediate and not a hydroxymethylbilane synthase-uroporphyrinogen III synthase complex. Identical elution profiles and kinetic properties of the enzymes from rat spleen and erythrocytes suggested that the enzyme isolated from spleen was possibly from stored erythrocytes. Sephadex G-75 chromatography of the heat-stable DEAE-cellulose-purified form yielded pure enzyme as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The Mr was found to be 43000 +/- 1500. Initial-velocity studies on all enzyme forms showed a hyperbolic dependence of velocity on substrate concentration, demonstrating the existence of a displacement-type mechanism. For the heat-stable form Vmax, varied with pH as a typical bell-shaped curve, indicating that two ionizable groups with pK values of 7.4 and 8.8 are important for catalysis. Km decreased with decreasing pH on the acid side of the pH optimum, suggesting the absence of ionization of a group with pK 7.4 in free enzyme or substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号