首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

2.
Identification of proteins in complex mixtures by mass spectrometry is most useful when quantitative data is also obtained. We recently introduced isotope-coded affinity tags (ICAT reagents) for the relative quantification of proteins present in two or more biological samples. In this report, we describe a new generation of ICAT reagents that contain the following additional features: (1) a visible tag that allows the electrophoretic position of tagged peptides during separation to be easily monitored; (2) a photocleavable linker that allows most of the tag to be removed prior to mass spectrometric analysis; (3) an isotope tag that contains carbon-13 and nitrogen-15 atoms instead of deuterium to ensure precise comigration of light and heavy tagged peptides by reverse-phase HPLC. These reagents contain an iodoacetyl group that selectively reacts with peptide cysteine residues. Peptide modification chemistry is also reported that allows tagging of peptides that are devoid of cysteine. The synthesis of these visible isotope-coded affinity tags (VICAT reagents), and their reaction with peptides are described in this report. VICAT reagents containing a carbon-14 visible probe or an NBD fluorophore are described. These reagents are most useful for the determination of the absolute quantity of specific target proteins in complex protein mixtures such as serum or cell lysates.  相似文献   

3.
Summary The oxidation of thioether bonds in peptides is still one of the major side reactions during peptide synthesis and it is easily detected by electrospray mass spectrometry. A fast reduction of oxidized methionine, biotin and tripalmitoyl-S-glyceryl-cysteine in synthetic peptides is possible using mixtures of trimethylsilylbromide and ethanedithiol as additives in trifluoroacetic acid. Simple procedures have been worked out which are especially suitable for handling the reduction of large numbers of peptides, prepared by multiple peptide synthesis, and of peptide libraries.  相似文献   

4.
The ability to acquire structurally informative daughter ion spectra for individual peptides undergoing separation and analysis by continuous flow fast atom bombardment (CF FAB) is demonstrated. To illustrate the potential of this methodology, tryptic and chymotryptic digests of the 29-residue peptide glucagon were analyzed by CF FAB using mass spectrometric and tandem mass spectrometric detection in consecutive analyses. Daughter ion spectra were recorded using B/E linked scans for the major hydrolysis products observed by liquid chromatography/mass spectrometry. The peptide mixtures were separated by gradient capillary high-performance liquid chromatography with the FAB matrix being added post-column using a coaxial flow interface between the column and flow probe. The entire effluent (3 microl min(-1)) was sampled by the mass spectrometer. Results obtained using less than 300 pmol of digested glucagon indicated several advantages to tandem mass spectrometric detection including the ability to confirm identities for products of enzymatic digestion and the potential use of this method for tandem sequence analysis of peptide mixtures.  相似文献   

5.
Combined applications of affinity purification procedures and mass-spectrometric analyses (affinity mass spectrometry or affinity-directed mass spectrometry) have gained broad interest in various fields of biological sciences. We have extended these techniques to the purification and analysis of closely related peptides from complex mixtures and to the characterization of binding motifs and relative affinities in protein-protein interactions. The posttranslational modifications in the carboxy-terminal region of porcine brain tubulin are used as an example for the applicability of affinity mass spectrometry in the characterization of complex patterns of related peptides. We also show that affinity mass spectrometry allows the mapping of sequential binding motifs of two interacting proteins. Using the ActA/Mena protein-protein complex as a model system, we show that we can selectively purify Mena-binding peptides from a tryptic digest of ActA. The results from this assay are compared to data sets obtained earlier by classical methods using synthetic peptides and molecular genetic experiments. As a further expansion of affinity mass spectrometry, we have established an internally standardized system that allows comparison of the affinities of related ligands for a given protein. Here the affinities of two peptide ligands for the monoclonal tubulin-specific antibody YL1/2 are determined in terms of half-maximal competition.  相似文献   

6.
Hydrophilic peptides in shotgun proteomics have been shown to be problematic in conventional chromatography. Typically, C18 solid phase extraction or peptide traps are used for desalting the sample prior to mass spectrometry analysis, but the capacity to retain hydrophilic peptides is not very high, causing a bias toward more hydrophobic peptides. This is particularly problematic in phosphoproteomic studies. We tested the compatibility of commercially available boron nitride as a novel material for peptide desalting. Boron nitride can be used to recover a wide range of peptides with different physicochemical properties comparable to combined C18 and graphite carbon material.  相似文献   

7.
A convenient synthesis of some homologous light isotope-coded affinity tags (ICAT-L) containing an acid-labile moiety between the affinity component biotin and an electrophilic polar linker is described. These light ICAT reagents give smooth mass spectral signals in tandem mass spectrometry (MS/MS) analyses of some commercially available cysteine-containing peptides. However, these ICAT molecules are designed for use in identification and relative quantification of whole or partially purified cellular and tissue proteomes. Since the biotin moiety can be readily cleaved off the reagent after mass tagging, undesired residual fragmentation patterns caused by biotin of derived peptides, as normally observed using biotin-containing ICAT reagents, are effectively eliminated. This strategy should enhance peptide sequence coverage significantly which, in turn, should result in improving the quality of data obtained during data-dependent peptide mass and tandem mass spectral analysis of whole proteomes.  相似文献   

8.
Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide–resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane‐embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt α‐helical secondary structure is evidenced by circular dichroism spectroscopy. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Capillary column immobilised metal affinity chromatography (IMAC) has been combined on-line with electrospray ionisation/quadrupole time-of-flight mass spectrometry for the fractionation of histidine-containing peptides. IMAC beads (Poros 20MC, 20 microm) containing imidodiacetate chelating groups on a cross-linked poly(styrene-divinylbenzene) support were packed into a fused silica column (250 microm i.d.), which was interfaced to the electrospray ion source of the spectrometer. A Cu(II) activated column was used to isolate histidine-containing peptides from tryptic and other peptide mixtures with an average breakthrough of 9.1%, to reduce the complexity of the mass spectral analysis. The analysis cycle time was reduced to less than 15 min, at an optimum flow rate of 7.5 microL/min, without sacrificing peptide selectivity. Direct coupling of capillary IMAC with MS allows on-line separation, using MS compatible loading and elution buffers, and detection in a high-throughput fashion when compared to off-line strategies.  相似文献   

10.
Stable isotope labeling of peptides by reductive dimethylation (ReDi labeling) is a method to accurately quantify protein expression differences between samples using mass spectrometry. ReDi labeling is performed using either regular (light) or deuterated (heavy) forms of formaldehyde and sodium cyanoborohydride to add two methyl groups to each free amine. Here we demonstrate a robust protocol for ReDi labeling and quantitative comparison of complex protein mixtures. Protein samples for comparison are digested into peptides, labeled to carry either light or heavy methyl tags, mixed, and co-analyzed by LC-MS/MS. Relative protein abundances are quantified by comparing the ion chromatogram peak areas of heavy and light labeled versions of the constituent peptide extracted from the full MS spectra. The method described here includes sample preparation by reversed-phase solid phase extraction, on-column ReDi labeling of peptides, peptide fractionation by basic pH reversed-phase (BPRP) chromatography, and StageTip peptide purification. We discuss advantages and limitations of ReDi labeling with respect to other methods for stable isotope incorporation. We highlight novel applications using ReDi labeling as a fast, inexpensive, and accurate method to compare protein abundances in nearly any type of sample.  相似文献   

11.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has become a fundamental tool for the identification and analysis of peptides and proteins. MALDI-TOF is well suited for the analysis of complex biological mixtures because samples are crystallized onto a solid support that can be washed to remove contaminants and salts prior to laser desorption. A number of approaches for immobilizing samples onto MALDI targets have been put forth. These include the use of different chemical matrices and the immobilization of samples onto different solid supports. In large part though, the preparation of MALDI targets has been an empirical exercise that often requires a unique series of conditions for every sample. Here, a simple method for the application of peptide mixtures onto MALDI targets is put forth. This method differs because peptides are added directly to a sample of nitrocellulose dissolved in acetone, allowing them to interact in solution-phase organic solvent. This solution-phase mixture is then spotted to the MALDI target and evaporated, forming a homogenous solid surface for laser desorption. This procedure is robust, highly sensitive, tolerant to detergents, and easily learned. In our hands, the method provides as much as a 10-fold enhancement to the detection of tryptic peptide fragments derived from in-gel digests.  相似文献   

12.
We present a robust and general shotgun glycoproteomics approach to comprehensively profile glycoproteins in complex biological mixtures. In this approach, glycopeptides derived from glycoproteins are enriched by selective capture onto a solid support using hydrazide chemistry followed by enzymatic release of the peptides and subsequent analysis by tandem mass spectrometry. The approach was validated using standard protein mixtures that resulted in a close to 100% capture efficiency. Our capture approach was then applied to microsomal fractions of the cisplatin-resistant ovarian cancer cell line IGROV-1/CP. With a Protein Prophet probability value greater than 0.9, we identified a total of 302 proteins with an average protein identification rate of 136 +/- 19 (n = 4) in a single linear quadrupole ion trap (LTQ) mass spectrometer nano-LC-MS experiment and a selectivity of 91 +/- 1.6% (n = 4) for the N-linked glycoconsensus sequence. Our method has several advantages. 1) Digestion of proteins initially into peptides improves the solubility of large membrane proteins and exposes all of the glycosylation sites to ensure equal accessibility to capture reagents. 2) Capturing glycosylated peptides can effectively reduce sample complexity and at the same time increase the confidence of MS-based protein identifications (more potential peptide identifications per protein). 3) The utility of sodium sulfite as a quencher in our capture approach to replace the solid phase extraction step in an earlier glycoprotein chemical capture approach for removing excess sodium periodate allows the overall capture procedure to be completed in a single vessel. This improvement minimizes sample loss, increases sensitivity, and makes our protocol amenable for high throughput implementation, a feature that is essential for biomarker identification and validation of a large number of clinical samples. 4) The approach is demonstrated here on the analysis of N-linked glycopeptides; however, it can be applied equally well to O-glycoprotein analysis.  相似文献   

13.
This report describes an integrated and modular microsystem providing rapid analyses of trace-level tryptic digests for proteomics applications. This microsystem includes an autosampler, a microfabricated device comprising a large channel (2.4 microl total volume), an array of separation channels, together with a low dead volume enabling the interface to nanoelectrospray mass spectrometry. The large channel of this microfluidic device provides a convenient platform to integrate C(18) reverse phase packing or other type of affinity media such as immobilized antibodies or immobilized metal affinity chromatography beads thus enabling affinity selection of target peptides prior to electrophoretic separation and mass spectrometry analyses on a quadrupole/time-of-flight instrument. Sequential injection, preconcentration, and separation of peptide standards and tryptic digests are achieved with a throughput of up to 12 samples/per h and a concentration detection limit of approximately 5 nM (25 fmol on chip). Replicate injections of peptide mixtures indicated that reproducibility of migration time was 1.2-1.8%, whereas relative standard deviation ranging from 9.2 to 11.8% are observed on peak heights. The application of this device for trace-level protein identification is demonstrated for two-dimensional gel spots obtained from extracts of human prostatic cancer cells (LNCap) using both peptide mass-fingerprint data base searching and on-line tandem mass spectrometry. Enrichment of target peptides prior to mass spectral analyses is achieved using c-myc-specific antibodies immobilized on protein G-Sepharose beads and facilitates the identification of antigenic peptides spiked at a level of 20 ng/ml in human plasma. Affinity selection is also demonstrated for gel-isolated protein bands where tryptic phosphopeptides are captured on immobilized metal affinity chromatography beads and subsequently separated and characterized on this microfluidic system.  相似文献   

14.
A methodology for the rapid and quantitative analysis of phosphorylation sites in proteins is presented. The coupling of capillary high-performance liquid chromatography (HPLC) to electrospray ionization mass spectrometry (ESI-MS) allowed one to distinguish phosphorylation sites based on retention time and mass difference from complex peptide mixtures. The methodology was first evaluated and validated for a mixture of non-, mono-, and dityrosine-phosphorylated synthetic peptides, corresponding to the tryptic fragment 485–496 (ALGADDSYYTAR) of the human protein tyrosine kinase ZAP-70. The limits of detection for the non-, mono- and diphosphorylated peptides were about 15, 40 and 100 fmol, respectively, when using a 300 μm I.D. column. Application of the method was extended to identify phosphopeptides generated from a trypsin digest of recombinant autophosphorylated ZAP-70, in particular with respect to quantifying the status at the regulatory phosphorylation sites Tyr-492 and Tyr-493. Combination of chromatographic and on-line tandem mass spectrometry data allowed one to ascertain the identity of the detected peptides, a prerequisite to analyses in more complex biological samples. As an extension to the methodology described above, we evaluated the feasibility of interfacing capillary HPLC to matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), using a micromachined piezoelectric flow-through dispenser as the interface. This enabled direct arraying of chromatographically separated components onto a target plate that was precoated with matrix for subsequent analysis by MALDI-TOF-MS without further sample handling.  相似文献   

15.
We describe and demonstrate a global strategy that extends the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements based upon the use of peptide "accurate mass tags" (AMTs) produced by global protein enzymatic digestion. The two-stage strategy exploits Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to validate peptide AMTs for a specific organism, tissue or cell type from "potential mass tags" identified using conventional tandem mass spectrometry (MS/MS) methods, providing greater confidence in identifications as well as the basis for subsequent measurements without the need for MS/MS, and thus with greater sensitivity and increased throughput. A single high resolution capillary liquid chromatography separation combined with high sensitivity, high resolution and accurate FT-ICR measurements has been shown capable of characterizing peptide mixtures of significantly more than 10(5) components with mass accuracies of < 1 ppm, sufficient for broad protein identification using AMTs. Other attractions of the approach include the broad and relatively unbiased proteome coverage, the capability for exploiting stable isotope labeling methods to realize high precision for relative protein abundance measurements, and the projected potential for study of mammalian proteomes when combined with additional sample fractionation. Using this strategy, in our first application we have been able to identify AMTs for >60% of the potentially expressed proteins in the organism Deinococcus radiodurans.  相似文献   

16.
Candidate biomarker proteins, including chaperonin 10 and pyruvate kinase, previously discovered and identified using mass-tagging reagents with multidimensional liquid chromatography and tandem mass spectrometry (DeSouza, L.; et al. J. Proteome Res. 2005, 4, 377-386) have been identified in serum-free media of cultured endometrial cancer (KLE and HEC-1-A) and cervical cancer (HeLa) cells. These and other cancer-associated proteins were released by the cultured cells within 24 h of growth. A total of 203 proteins from the KLE cells, 86 from HEC-1-A, and 161 from HeLa are reported.  相似文献   

17.
The disulfide bond bridge is an important post-translational modification for proteins. This study presents a structural analysis of biologically active peptides and proteins containing disulfide bonds using electrochemistry (EC) online combined with desorption electrospray ionization mass spectrometry (DESI-MS), in which the sample undergoes electrolytic disulfide cleavage in an electrochemical flow cell followed by MS detection. Using this EC/DESI-MS method, the disulfide-containing peptides can be quickly identified from enzymatic digestion mixtures, simply based on the abrupt decrease in their relative ion abundances after electrolysis. Peptide mass mapping and tandem MS analysis of the ions of the resulting free peptide chains can possibly establish the disulfide linkage pattern and sequence the precursor peptides. In this regard, the method provides much more chemical information than previous analogous electrochemical analyses. In addition, derivatization of thiols by selective selenamide reagents is useful for easy recognition of reduced peptide ions and the number of their free thiols. Furthermore, electrolytic reduction of proteins (e.g., α-lactalbumin) leads to increased charges on the detected protein ions, revealing the role of disulfide bonds on maintaining protein conformation. This electrochemical mass spectrometric method is fast (completed in few minutes) and does not need chemical reductants, potentially having valuable applications in proteomics research.  相似文献   

18.
The use and applicability of silica based capillary monolithic reversed-phase columns in proteomic analysis has been evaluated by liquid chromatography-mass spectrometry (LC-MS). Chromatographic performance of the monolithic capillaries was evaluated with a tryptic digest of cytochrome C showing very good resolution and reproducibility in addition to the known advantages of a low pressure drop over a time period of 6 months. Monoliths were subsequently tested for their suitability to separate proteins and peptides from samples typically encountered in proteomic research such as in-gel digested tryptic peptide mixtures or fractions of proteolytically digested human serum. The monolithic capillaries also proved useful in the analysis of phospholipid species in bronchoalveolar lavage fluid. Compared to particle-filled conventional capillary columns, rapid and highly efficient separation of peptides and proteins was achieved using these bimodal pore size distribution columns, and good quality collision induced dissociation (CID) mass spectra were obtained on an ion trap mass spectrometer. These novel monolithic separation media are thus a promising addition to the methodological toolbox of proteomics research.  相似文献   

19.
液质联用多反应监测法定量目标多肽或蛋白质   总被引:2,自引:0,他引:2  
为建立优化的血浆内源性多肽提取方法,并且构建目标多肽和蛋白质的质谱定量方 法,本研究考察了超滤法、有机溶剂沉淀法和固相萃取法对血浆内源性多肽的提取效果 ,并通过Tricine-SDS-PAGE对提取效果进行比较.通过液相色谱串联质谱多反应监测 (MRM)分析,建立了多肽标准品ESAT-6定量方法,并将ESAT-6定量建立的液相色谱和质谱条件应用于蛋白质的定量,对多肽和蛋白质MRM定量的标准曲线进行了考 察.Tricine-SDS-PAGE结果表明,乙腈沉淀法是最佳的血浆内源性多肽提取方法,低分子量的多肽可以得到很好的富集,且能有效地去除高分子蛋白质的污染.液相色谱串联 质谱MRM法检测血浆内提取的多肽,标准曲线的线性较好,相关系数为0.999.另外,采 用MRM法对胶内分离的蛋白质进行定量,标准曲线的线性相关系数为0.995.综上所述, 本研究构建了一种简单有效的血浆多肽提取方法,通过液质联用MRM法成功地实现了目标多肽和蛋白质定量测定.该定量方法可以推广应用于复杂样品中的多肽和蛋白质的定 量分析.  相似文献   

20.
We describe an enabling technique for proteome analysis based on isotope-differential dimethyl labeling of N-termini of tryptic peptides followed by microbore liquid chromatography (LC) matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS). In this method, lysine side chains are blocked by guanidination to prevent the incorporation of multiple labels, followed by N-terminal labeling via reductive amination using d(0),(12)C-formaldehyde or d(2),(13)C-formaldehyde. Relative quantification of peptide mixtures is achieved by examining the MALDI mass spectra of the peptide pairs labeled with different isotope tags. A nominal mass difference of 6 Da between the peptide pair allows negligible interference between the two isotopic clusters for quantification of peptides of up to 3000 Da. Since only the N-termini of tryptic peptides are differentially labeled and the a(1) ions are also enhanced in the MALDI MS/MS spectra, interpretation of the fragment ion spectra to obtain sequence information is greatly simplified. It is demonstrated that this technique of N-terminal dimethylation (2ME) after lysine guanidination (GA) or 2MEGA offers several desirable features, including simple experimental procedure, stable products, using inexpensive and commercially available reagents, and negligible isotope effect on reversed-phase separation. LC-MALDI MS combined with this 2MEGA labeling technique was successfully used to identify proteins that included polymorphic variants and low abundance proteins in bovine milk. In addition, by analyzing a mixture of two equal amounts of milk whey fraction as a control, it is shown that the measured average ratio for 56 peptide pairs from 14 different proteins is 1.02, which is very close to the theoretical ratio of 1.00. The calculated percentage error is 2.0% and relative standard deviation is 4.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号