首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Yao H  Sem DS 《FEBS letters》2005,579(3):661-666
Proteomics efforts have created a need for better strategies to functionally categorize newly discovered proteins. To this end, we have employed saturation transfer difference NMR with pools of closely related cofactors, to determine cofactor preferences. This approach works well for dehydrogenases and has also been applied to cyclic nucleotide-binding proteins. In the latter application, a protein (radial spoke protein-2, RSP2) that plays a central role in forming the radial spoke of Chlamydomonas reinhardtii flagella was shown to bind cCMP. cCMP-binding proteins are rare, although previous reports of their presence in sperm and flagella suggest that cCMP may have a more general role in flagellar function. 31P NMR was used to monitor the preferential hydrolysis of ATP versus GTP, suggesting that RSP2 is a kinase.  相似文献   

2.
M proteins are antiphagocytic molecules on the surface of group A streptococci having physical characteristics similar to those of mammalian tropomyosin. Both are alpha-helical coiled-coil fibrous structures with a similar seven-residue periodicity of nonpolar and charged amino acids. To determine if M protein is functionally similar to tropomyosin we studied the interaction of M protein with F-actin. At low ionic strength, M protein binds to actin weakly with a stoichiometry different from that of tropomyosin. M protein does not compete with tropomyosin for the binding to actin, indicating that it is functionally different from tropomyosin. M protein does compete with myosin subfragment-1 for binding to actin and induces the formation of bundles of actin filaments. The formation of actin aggregates is associated with a sharp reduction in the rate of ATP hydrolysis by subfragment-1. Intact streptococci having M protein on their surface are shown to bind to actin.  相似文献   

3.
A group of proteins that bind to the chromaffin granule membrane in the presence of Ca2+ has been isolated by affinity chromatography of bovine adrenal medullary cytosol on granule membranes coupled to Sepharose 4B. Twenty-two of these proteins were resolved into classes depending upon the Ca2+ concentration at which they were eluted from the affinity column (40 or 0.1 microM), upon their affinities for native granule membranes or for liposomes prepared from extracted granule lipids, and upon the requirement of seven of the proteins for ATP in the cytosol fraction and column buffers to promote binding. The molecular weights and isoelectric points of these proteins were determined by two-dimensional electrophoresis. Two of the granule-binding proteins were identified: synexin and calmodulin. Calmodulin was found to bind to seven specific granule membrane proteins after diffusion of 125I-labeled calmodulin into an acrylamide gel of membrane proteins separated by electrophoresis in the presence of sodium dodecyl sulfate. A phospholipid-activated protein kinase activity, possibly due to protein kinase C, was present in the granule-binding fraction. Two major granule-binding proteins were found to present a pattern in two-dimensional electrophoresis that was very similar to but shifted slightly toward the basic end of the gel from the pattern generated by light chains associated with clathrin in adrenal medullary coated vesicles. In the chromaffin cell, these proteins, by associating with the granule membrane in the presence of an increased cytosolic Ca2+ concentration, might play a variety of roles in the process of exocytosis.  相似文献   

4.
We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure, or evolutionary information and, therefore, extends our ability to analyze and functionally annotate novel genes.  相似文献   

5.
Simplified proteomics approach to discover protein-ligand interactions   总被引:1,自引:0,他引:1  
Identifying targets of biologically active small molecules is an essential but still challenging task in drug research and chemical genetics. Energetics-based target identification is an approach that utilizes the change in the conformational stabilities of proteins upon ligand binding in order to identify target proteins. Different from traditional affinity-based capture approaches, energetics-based methods do not require any labeling or immobilization of the test molecule. Here, we report a surprisingly simple version of energetics-based target identification, which only requires ion exchange chromatography, SDS PAGE, and minimal use of mass spectrometry. The complexity of a proteome is reduced through fractionation by ion exchange chromatography. Urea-induced unfolding of proteins in each fraction is then monitored by the significant increase in proteolytic susceptibility upon unfolding in the presence and the absence of a ligand. Proteins showing a different degree of unfolding with the ligand are identified by SDS PAGE followed by mass spectrometry. Using this approach, we identified ATP-binding proteins in the Escherichia coli proteome. In addition to known ATP-binding proteins, we also identified a number of proteins that were not previously known to interact with ATP. To validate one such finding, we cloned and purified phosphoglyceromutase, which was not previously known to bind ATP, and confirmed that ATP indeed stabilizes this protein. The combination of fractionation and pulse proteolysis offers an opportunity to investigate protein-drug or protein-metabolite interactions on a proteomic scale with minimal instrumentation and without modification of a molecule of interest.  相似文献   

6.
Wrzeszczynski KO  Rost B 《Proteins》2009,74(3):655-668
Machine-learning techniques can classify functionally related proteins where homology-transfer as well as sequence and structure motifs fail. Here, we present a method that aimed at complementing homology-transfer in the identification of cell cycle control kinases from sequence alone. First, we identified functionally significant residues in cell cycle proteins through their high sequence conservation and biophysical properties. We then incorporated these residues and their features into support vector machines (SVM) to identify new kinases and more specifically to differentiate cell cycle kinases from other kinases and other proteins. As expected, the most informative residues tend to be highly conserved and tend to localize in the ATP binding regions of the kinases. Another observation confirmed that ATP binding regions are typically not found on the surface but in partially buried sites, and that this fact is correctly captured by accessibility predictions. Using these highly conserved, semi-buried residues and their biophysical properties, we could distinguish cell cycle S/T kinases from other kinase families at levels around 70-80% accuracy and 62-81% coverage. An application to the entire human proteome predicted at least 97 human proteins with limited previous annotations to be candidates for cell cycle kinases.  相似文献   

7.
Requejo R  Tena M 《Phytochemistry》2005,66(13):1519-1528
To gain insight into plant responses to arsenic, the effect of arsenic exposure on maize (Zea mays L.) root proteome has been examined. Maize seedlings were fed hydroponically with 300 microM sodium arsenate or 250 microM sodium arsenite for 24 h, and changes in differentially displayed proteins were studied by two-dimensional electrophoresis and digital image analysis. About 10% of total detected maize root proteins (67 out of 700) were up- or down-regulated by arsenic, among which 20 were selected as being quite reproducibly affected by the metalloid. These were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 11 of them could be identified by comparing their peptide mass fingerprints against protein- and expressed sequence tag-databases. The set of identified maize root proteins highly responsive to arsenic exposure included a major and functionally homogeneous group of seven enzymes involved in cellular homeostasis for redox perturbation (e.g., three superoxide dismutases, two glutathione peroxidases, one peroxiredoxin, and one p-benzoquinone reductase) besides four additional, functionally heterogeneous, proteins (e.g., ATP synthase, succinyl-CoA synthetase, cytochrome P450 and guanine nucleotide-binding protein beta subunit). These findings strongly suggest that the induction of oxidative stress is a main process underlying arsenic toxicity in plants.  相似文献   

8.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

9.
Advances in large-scale technologies in proteomics, such as yeast two-hybrid screening and mass spectrometry, have made it possible to generate large Protein Interaction Networks (PINs). Recent methods for identifying dense sub-graphs in such networks have been based solely on graph theoretic properties. Therefore, there is a need for an approach that will allow us to combine domain-specific knowledge with topological properties to generate functionally relevant sub-graphs from large networks. This article describes two alternative network measures for analysis of PINs, which combine functional information with topological properties of the networks. These measures, called weighted clustering coefficient and weighted average nearest-neighbors degree, use weights representing the strengths of interactions between the proteins, calculated according to their semantic similarity, which is based on the Gene Ontology terms of the proteins. We perform a global analysis of the yeast PIN by systematically comparing the weighted measures with their topological counterparts. To show the usefulness of the weighted measures, we develop an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The proposed method is based on the ranking of nodes, i.e., proteins, according to their weighted neighborhood cohesiveness. The highest ranked nodes are considered as seeds for candidate modules. The algorithm then iterates through the neighborhood of each seed protein, to identify densely connected proteins with high functional similarity, according to the chosen parameters. Using a yeast two-hybrid data set of experimentally determined protein-protein interactions, we demonstrate that SWEMODE is able to identify dense clusters containing proteins that are functionally similar. Many of the identified modules correspond to known complexes or subunits of these complexes.  相似文献   

10.
BiP, immunoglobulin binding protein, is an ER homologue of Hsp 70. However, unlike other Hsp70 proteins, regulatory protein(s) for BiP has not been identified. Here, we demonstrated the presence of potential regulatory proteins for BiP using a pull-down assay. Since BiP can bind any unfolded protein, only the ATPase domain of BiP was used for the pull-down assay in order to minimize nonspecific binding. The ATPase domain was cloned to produce recombinant protein, which was then conjugated to CNBr-activated agarose. The structural conformation and ATP hydrolysis activity of the recombinant ATPase domain were similar to those of the native protein. Eight proteins from metabolically labeled mouse plasmacytoma cells specifically bound to the recombinant ATPase protein. The binding of these proteins was inhibited by excess amounts of free ATPase protein, and was dependent on the presence of ATP. These proteins were eluted by ADP. Of these proteins, Grp 170 and BiP where identified, while the others were not identified as known ER proteins, from Western blot analyses. The presence of the ATPase-binding proteins for Bip was first demonstrated in this study, and our data suggest similar regulatory machinery for BiP may exist in the ER, as found in prokaryotes and other cellular compartments.  相似文献   

11.
Switching between the active (ATP and DNA bound) and inactive conformations of the homologous recombination RecA protein is regulated by ATP hydrolysis. First, we use the homologous pairing domain of RecA derived from its mobile loop L2 to show that the interaction of this random coil peptide with the gamma-phosphate of ATP results in a peptide beta-conformation similar to that previously shown to be induced by DNA binding. Next, we show that in the whole RecA protein two residues in this L2 domain, Gln194 and Arg196, are catalytic amino acid residues for ATP hydrolysis and functionally resemble the corresponding residues engaged in GTP hydrolysis by two distinct classes of G proteins. Finally, we show that the role of DNA and high salt in the stimulation of the ATPase of RecA is to stabilize this highly mobile region involved in hydrolysis. This is a role similar to that described for RGSs in the activation of the GTPase of heterotrimeric G proteins. Therefore, (i) a prototypical DNA-dependent ATPase and ATP-stimulated DNA-binding protein, RecA, and eukaryotic signaling proteins share common stereochemical regulatory mechanisms; and (ii) in a remarkable example of parsimony, loop L2 is a molecular switch that controls both ATP promoted DNA binding and pairing reactions and DNA stimulated ATP hydrolysis.  相似文献   

12.
The protein products of two crp alleles encoding mutationally altered catabolite gene activator proteins CAP and CAPc, which are functionally active in vivo in the absence of cAMP, were purified by an immunoaffinity purification procedure. These proteins bind cAMP with the same affinity as does the wild-type catabolite gene activator protein. From their susceptibility to the proteolytic enzyme subtilisin, we conclude that the two mutationally altered proteins adopt structural features adequate for biological activity and similar to the conformation that cAMP elicits or stabilizes in wild-type catabolite gene activator protein. We note, however, that their conformation is not unique and can be modulated by cAMP. The two altered proteins, CAP and CAPc, bind to the lactose promoter, giving rise to specific DNA-protein complexes in the absence of cAMP and promote initiation of specific lac messenger RNA synthesis.  相似文献   

13.
We have collected a set of 44 Arabidopsis proteins with similarity to the USPA (universal stress protein A of Escherichia coli) domain of bacteria. The USPA domain is found either in small proteins, or it makes up the N-terminal portion of a larger protein, usually a protein kinase. Phylogenetic tree analysis based upon a multiple sequence alignment of the USPA domains shows that these domains of protein kinases 1.3.1 and 1.3.2 form distinct groups, as do the protein kinases 1.4.1. This indicates that their USPA domain structures have diverged appreciably and suggests that they may subserve distinct cellular functions. Two USPA fold classes have been proposed: one based on Methanococcus jannaschii MJ0577 (1MJH) that binds ATP, and the other based on the Haemophilus influenzae universal stress protein (1JMV), highly similar to E. coli UspA, which does not bind ATP. A set of common residues involved in ATP binding in 1MJH and conserved in similar bacterial sequences is also found in a distinct cluster of Arabidopsis sequences. Threading analysis, which examines aspects of secondary and tertiary structure, confirms this Arabidopsis sequence cluster as highly similar to 1MJH. This structural approach can distinguish between the characteristic fold differences of 1MJH-like and 1JMV-like bacterial proteins and was used to assign the complete set of candidate Arabidopsis proteins to one of these fold classes. It is clear that all the plant sequences have arisen from a 1MJH-like ancestor.  相似文献   

14.
《Biophysical journal》2021,120(20):4600-4607
ATP7A and ATP7B are structurally similar but functionally distinct active copper transporters that regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. Both proteins have a chain of six cytosolic metal-binding domains (MBDs) believed to be involved in the copper-dependent regulation of the activity and intracellular localization of these enzymes. Although all the MBDs are quite similar in structure, their spacing differs markedly between ATP7A and ATP7B. We show by NMR that the long polypeptide between MBD1 and MBD2 of ATP7A forms an additional seventh metastable domain, which we called HMA1A (heavy metal associated domain 1A). The structure of HMA1A resembles the MBDs but contains no copper-binding site. The HMA1A domain, which is unique to ATP7A, may modulate regulatory interactions between MBD1–3, contributing to the distinct functional properties of ATP7A and ATP7B.  相似文献   

15.
The N-terminal head domain of human dystrophin has been expressed in soluble form and high yield in E. coli, allowing us to test the previously unconfirmed assumption that dystrophin binds actin. DMD246, the first 246 amino acid residues of dystrophin, binds F-actin in a strongly co-operative manner with a Hill constant of 3.5, but does not bind G-actin. Dystrophin heads are thus functionally competent actin-binding proteins. This result opens the way to identifying critical residues in the actin-binding site and encourages us that the other domains of dystrophin might also be treated as functionally autonomous modules, accessible to a similar approach.  相似文献   

16.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

17.
Most ATP binding cassette (ABC) proteins are pumps that transport substrates across biological membranes using the energy of ATP hydrolysis. Functional ABC proteins have two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is unresolved. This is due in part to the limited kinetic information on NBD association and dissociation. Here, we show dimerization of a catalytically active NBD and follow in real time the association and dissociation of NBDs from the changes in fluorescence emission of a tryptophan strategically located at the center of the dimer interface. Spectroscopic and structural studies demonstrated that the tryptophan can be used as dimerization probe, and we showed that under hydrolysis conditions (millimolar MgATP), not only the dimer dissociation rate increases, but also the dimerization rate. Neither dimer formation or dissociation are clearly favored, and the end result is a dynamic equilibrium where the concentrations of monomer and dimer are very similar. We proposed that based on their variable rates of hydrolysis, the rate-limiting step of the hydrolysis cycle may differ among full-length ABC proteins.  相似文献   

18.
In a search for nucleotide binding proteins associated with the T-cell receptor (TCR)-CD3 complex, a novel labeling technique involving introduction of [alpha-32P]GTP or [alpha-32P]ATP into permeabilized cells followed by in situ periodate oxidation was developed. To test the method we first demonstrated that p21ras and other classical GTP binding proteins could be labeled in a GTP-specific manner. In human T lymphocytes the TCR zeta chain was found to be specifically labeled by GTPoxi but not by ATPoxi or CTPoxi. Labeling kinetics and competition experiments demonstrated that zeta had a capacity to bind GTP and GDP but not GMP or ATP. Proteolytic cleavage experiments identified lysine 128 as the GTP crosslinking site. This result was confirmed by studies using oligonucleotide-directed mutagenesis. Lysine residues 128, 135 and 149 were each replaced by arginine and glycine 134 by valine and mutated proteins were expressed in CHO cells. Labeling of mutants K128R and G134V was abrogated whereas mutant proteins K135R and K148R could still be specifically crosslinked to GTP. We conclude that Lys128 and Gly134 are part of a GTP/GDP binding site suggesting that zeta is a unique GTP/GDP binding structure.  相似文献   

19.
Cytoplasmic dynein is a vesicle protein.   总被引:5,自引:0,他引:5  
Microtubule-based organelle transport is thought to be mediated by the force-generating proteins cytoplasmic dynein and kinesin. These motor proteins have been characterized based on their ability to associate with and translocate microtubules. We show here that cytoplasmic dynein is also present as a peripheral membrane protein of purified synaptic vesicles. The vesicle-associated cytoplasmic dynein is identified by its photo-induced cleavage in the presence of ATP and vanadate. Purified, soluble cytoplasmic dynein is competent to bind to vesicle membranes stripped of endogenous peripheral membrane proteins by alkaline pH. Dynein binding to membranes is saturable at a concentration of 1.00 +/- 0.15 pmol/micrograms vesicle protein and has a dissociation constant of 22.3 +/- 2.4 nM. The association of cytoplasmic dynein with the membrane cannot be reversed by incubation with ATP. Furthermore, following binding to membranes, dynein retains its ability to bind ATP and to be photo-cleaved in the presence of vanadate. The presence of cytoplasmic dynein on synaptic vesicles and its ability to bind to extracted membranes supports current models of microtubule-based organelle translocation.  相似文献   

20.
Proteins that bind ATP and GTP are important cellular components. We developed an immunological approach to selectively tag nucleotide-binding proteins based on the use of 5'-[4-(fluorosulfonyl)benzoyl]adenosine and 5'-[4-(fluorosulfonyl)benzoyl]guanosine affinity tags and an antibody against 4-(sulfonyl)benzoate. Detection follows affinity labeling, gel electrophoresis, and ester bond cleavage to expose the epitope. Trial analyses of labeled proteins from lymphoid cells identified multiple ATP-binding proteins, including chaperones, actin, kinases, an RNA splicing factor, a membrane ATPase, and ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号