首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How an orchid harms its pollinator   总被引:2,自引:0,他引:2  
Certain orchids produce flowers that mimic the sex pheromones and appearance of female insects in order to attract males by sexual deception for the purpose of pollination. In a series of field experiments, we found that the sexually deceptive orchid, Chiloglottis trapeziformis, can have a negative impact on its wasp pollinator Neozeleboria cryptoides. Male and female wasps, however, were affected differently by the orchid's deceit because of their different roles in the mimicry system. Male wasps could not discriminate between the chemical cues of orchids and female wasps, a vital signal in long-range attraction. Males, however, learn to avoid areas containing orchids. This strategy has implications for females attempting to attract mates in areas occupied by orchids. Compared with circumstances when females were on their own, females in the presence of orchids elicited fewer male approaches and no copulation attempts. Females in a large orchid patch also elicited fewer male approaches than females in a small patch. The nature of the orchid's impact on its wasp pollinator indicates an arms race evolutionary scenario in this interaction between plant and pollinator.  相似文献   

2.
The flower of a sexually deceptive orchid, Chiloglottis reflexa, mimics both the sex pheromone and the appearance of a female thynnine wasp (Neozeloboria nr. proxima). The flower is pollinated when visited by male wasps, who attempt mating with the flower. We have used these mimetic flowers to investigate mating behavior of the male wasps. In field choice experiments, males strongly prefer to visit flowers that are very low in the habitat, 15 cm, vs. flowers that are placed at 55 or 105 cm. These studies suggest that male precopulatory response is strongly dependent on the microlocation of the female (or female mimic). Other insect-mimicking orchids, which together attract several groups of Hymenoptera, may be useful in analogous experiments on mating behavior. Additionally, these experiments help elucidate features of the mimetic flowers, particularly stature, that act to efficiently attract potential pollinators.  相似文献   

3.
Ophrys flowers mimic virgin females of their pollinators, and thereby attract males for pollination. Stimulated by scent, the males attempt to copulate with flower labella and thereby ensure pollination. Here, we show for the first time, to our knowledge, that pollinator attraction in sexually deceptive orchids may be based on a few specific chemical compounds. Ophrys speculum flowers produce many volatiles, including trace amounts of (omega-1)-hydroxy and (omega-1)-oxo acids, especially 9-hydroxydecanoic acid. These compounds, which are novel in plants, prove to be the major components of the female sex pheromone in the scoliid wasp Campsoscolia ciliata, and stimulate male copulatory behaviour in this pollinator species. The specificity of the signal depends primarily on the structure and enantiomeric composition of the oxygenated acids, which is the same in wasps and in the orchids. The overall composition of the blend differs significantly between the orchid and its pollinator and is of secondary importance. 9-Hydroxydecanoic acid is a rarely occurring compound that until now has been identified only in honeybees. Contrary to the standard hypothesis that Ophrys flowers produce only 'second-class attractivity compounds' and are neglected once the pollinator females are present, we show that flowers are more attractive to the males than are their own females.  相似文献   

4.
Orchids are extraordinary among plants because many species are pollinated through sexual duplicity by producing flowers that mimic female insects to lure unsuspecting males. Previous work showed that sexual deception by the orchid Chiloglottis trapeziformis can have a negative impact on its wasp pollinator Neozeleboria cryptoides. We report that female wasps may be capable of mitigating the cost of the orchids' deception. Although male wasps quickly habituated to areas planted with unrewarding flower decoys, we found that the effectiveness of the chemical cue used by the wingless females to attract males increases with increasing distance from an orchid patch. The apparent specificity of the males' site-based avoidance strategy means that females emerging in areas occupied by flowering orchids could, potentially, leave the orchid colony by walking to increase their attractiveness.  相似文献   

5.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

6.
Orchids of the genus Chiloglottis are pollinated through the sexual deception of male wasps mainly from the genus Neozeleboria (Tiphiidae: Thynninae). The orchids mimic both the appearance and sex pheromones of wingless female thynnines but provide no reward to the deceived males. Despite the asymmetry of this interaction, strong pollinator specificity is typical. Such plant-pollinator interactions would seem to be relatively flexible in the plant's adaptive response to variation in the local pollinator resource. However, we present DNA sequence data on both orchids and wasps that demonstrate a pattern of pollinator conservatism operating at a range of taxonomic levels. Sequence data from the wasps indicate 15 of 16 Chiloglottis pollinators are closely related members of one clade of Thynninae. A pattern of congruence between orchid and wasp phylogenies is also demonstrated below the generic level, such that related orchids tend to use related thynnine wasps as specific pollinators. Comparative physiological data on the wasp responses to the floral scents of two Chiloglottis species and one outgroup, Arthrochilus, indicate similar attractive volatile chemicals are used by related orchid taxa. By extension, we infer a similarity of sex pheromone signals among related thynnines. Thus, the conservative pattern of pollinator change in sexually deceptive orchids may reflect phylogenetic patterns in the sex pheromones of their pollinators.  相似文献   

7.
The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre‐copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is becoming well understood for some species, but visual and tactile signals such as colour, shape, and texture remain neglected. Experimental manipulations that test for function, multi‐signal interactions, and pollinator perception of these signals are required. Furthermore, other forms of deception such as exploitation of pollinator sensory biases or mating preferences merit more comprehensive investigation. Application of molecular techniques adapted from model plants and animals is likely to deliver new insights into orchid signalling, and pollinator perception and behaviour. There is little current evidence that sexual deception drives any species‐level selection on pollinators. Pollinators do learn to avoid deceptive orchids and their locations, but this is not necessarily a response specific to orchids. Even in systems where evidence suggests that orchids do interfere with pollinator mating opportunities, considerable further research is required to determine whether this is sufficient to impose selection on pollinators or generate antagonistic coevolution or an arms race between orchids and their pollinators. Botanists, taxonomists and chemical ecologists have made remarkable progress in the study of deceptive orchid pollination. Further complementary investigations from entomology and behavioural ecology perspectives should prove fascinating and engender a more complete understanding of the evolution and maintenance of such enigmatic plant‐animal interactions.  相似文献   

8.
Sexually deceptive orchids mimic signals emitted by female insects in order to attract mate-searching males. Specific attraction of the targeted pollinator is achieved by sex pheromone mimicry, which constitutes the major attraction channel. In close vicinity of the flower, visual signals may enhance attraction, as was shown recently in the sexually deceptive orchid Ophrys heldreichii. Here, we conducted an in situ manipulation experiment in two populations of O. heldreichii on Crete to investigate whether the presence/absence of the conspicuous pink perianth affects reproductive success in two natural orchid populations. We estimated reproductive success of three treatment groups (with intact, removed and artificial perianth) throughout the flowering period as pollinaria removal (male reproductive success) and massulae deposition (female reproductive success). Reproductive success was significantly increased by the presence of a strong visual signal??the conspicuous perianth??in one study population, however, not in the second, most likely due to the low pollinator abundance in the latter population. This study provides further evidence that the coloured perianth in O. heldreichii is adaptive and thus adds to the olfactory signal to maximise pollinator attraction and reproductive success.  相似文献   

9.
Sexually deceptive orchids from the genus Ophrys attract their pollinators primarily through the chemical mimicry of female hymenopteran sex pheromones, thereby deceiving males into attempted matings with the orchid labellum. Floral odor traits are crucial for the reproductive success of these pollinator-limited orchids, as well as for maintaining reproductive isolation through the attraction of specific pollinators. We tested for the signature of pollinator-mediated selection on floral odor by comparing intra and interspecific differentiation in odor compounds with that found at microsatellite markers among natural populations. Three regions from southern Italy were sampled. We found strong floral odor differentiation among allopatric populations within species, among allopatric species and among sympatric species. Population differences in odor were also reflected in significant variation in the attractivity of floral extracts to the pollinator, Colletes cunicularius. Odor compounds that are electrophysiologically active in C. cunicularius males, especially alkenes, were more strongly differentiated among conspecific populations than nonactive compounds in the floral odor. In marked contrast to these odor patterns, there was limited population or species level differentiation in microsatellites (FST range 0.005 to 0.127, mean FST 0.075). We propose that the strong odor differentiation and lack of genetic differentiation among sympatric taxa indicates selection imposed by the distinct odor preferences of different pollinating species. Within species, low FST values are suggestive of large effective population sizes and indicate that divergent selection rather than genetic drift accounts for the strong population differentiation in odor. The higher differentiation in active versus non-active odor compounds suggests that divergent selection among orchid populations may be driven by local pollinator preferences for those particular compounds critical for pollinator attraction.  相似文献   

10.
In the sexually deceptive orchid genus Ophrys , reproductive isolation is based on the specific attraction of males of a single pollinator species by mimicking the female species-specific sex pheromone. Changes in the odor composition can lead to hybridization and speciation by the attraction of a new pollinator that acts as an isolation barrier toward other sympatrically occurring Ophrys species. On Sardinia, we investigated the evolutionary origin of two sympatrically occurring endemic species, Ophrys chestermanii and O. normanii , which are both pollinated by males of the cuckoo bumblebee Bombus vestalis . Chemical and electrophysiological analyses of floral scent and genetic analyses with amplified fragment length polymorphisms and plastid-markers clearly showed that O. normanii is neither a hybrid nor a hybrid species. The two species evolved from different ancestors, viz. O. normanii from O. tenthredinifera and O. chestermanii from O. annae , and converged to the same pollinator attracted by the same bouquet of polar compounds. In spite of sympatry, pollinator sharing and overlapping blooming periods, no evidence has been obtained for gene flow between O. chestermanii and O. normanii indicating an unusual case among sexually deceptive orchids in which postmating rather than premating reproductive isolation mechanisms strongly prevent interspecific gene flow.  相似文献   

11.
The reproductive biology and pollination mechanisms of Govenia utriculata (Sw.) Lindl. were studied in a mesophytic semideciduous forest at Serra do Japi, south-eastern Brazil. The floral visitors and pollination mechanisms were recorded, and experimental pollinations were carried out to determine the breeding system of this species. Populations of G. utriculata growing at Serra do Japi are exclusively visited and pollinated by two species of hoverflies in the genus Salpingogaster (Diptera: Syrphidae) that are attracted by deceit to the flowers of this orchid species. The lip apex and the column base present small brownish and yellow to orange spots that mimic pollen clusters. Govenia utriculata is self-compatible, but pollinator dependent. Natural fruit set was low (10%), but similar to that of other non-obligatorily autogamous sympatric orchid species that occur at Serra do Japi and of other fly-pollinated orchid species pollinated through deceptive mechanisms.  相似文献   

12.
Almost all species of the orchid genus Ophrys are pollinated by sexual deception. The orchids mimic the sex pheromone of receptive female insects, mainly hymenopterans, in order to attract males seeking to copulate. Most Ophrys species have achromatic flowers, but some exhibit a coloured perianth and a bright, conspicuous labellum pattern. We recently showed that the pink perianth of Ophrys heldreichii flowers increases detectability by its pollinator, males of the long-horned bee Eucera berlandi. Here we tested the hypothesis that the bright, complex labellum pattern mimics the female of the pollinator to increase attractiveness toward males. In a dual-choice test we offered E. berlandi males an O. heldreichii flower and a flower from O. dictynnae, which also exhibits a pinkish perianth but no conspicuous labellum pattern. Both flowers were housed in UV-transmitting acrylic glass boxes to exclude olfactory signals. Males significantly preferred O. heldreichii to O. dictynnae flowers. In a second experiment, we replaced the perianth of both flowers with identical artificial perianths made from pink card, so that only the labellum differed between the two flower stimuli. Males then chose between both stimuli at random, suggesting that the presence of a labellum pattern does not affect their choice. Spectral measurements revealed higher colour contrast with the background of the perianth of O. heldreichii compared to O. dictynnae, but no difference in green receptor-specific contrast or brightness. Our results show that male choice is guided by the chromatic contrast of the perianth during the initial flower approach but is not affected by the presence of a labellum pattern. Instead, we hypothesise that the labellum pattern is involved in aversive learning during post-copulatory behaviour and used by the orchid as a strategy to increase outcrossing.  相似文献   

13.
The thynnine wasp genus Neozeleboria Rohwer is the main pollinating group of the sexually deceptive Australian orchid genus, Chiloglottis R.Br. In a highly specialized interaction, Chiloglottis species attract males from a single or very few Neozeleboria species through the chemical mimicry of the female wasp's sex pheromone. An earlier study examining the historical association among Chiloglottis and Neozeleboria using DNA sequence data found matching phylogenetic patterns suggestive of cospeciation between orchids and pollinators. However, patterns of constraint in Neozeleboria emergence phenology and sex pheromones suggested that the close association among orchid and wasp clades may be due to pollinator switching among closely related wasp taxa that have similar traits. In this study, we further examine the association by incorporating a morphological phylogenetic analysis of non‐pollinating as well as pollinating Neozeleboria. The morphological analysis is then compared with DNA sequence data from one nuclear and one mitochondrial gene for an increased sample of outgroup genera. The combined molecular data set finds a monophyletic Neozeleboria, although support for this was not strong in the individual data sets. A high congruence between molecular and morphological analyses was found among higher groupings of Neozeleboria. Neozeleboria species that pollinate Chiloglottis species are not found as a monophyletic group but, rather, are scattered throughout a phylogeny comprising pollinators and non‐pollinators. Under the cospeciation model, the presence of related Neozeleboria non‐pollinators carries the unlikely implication that the association between plant and pollinator has been repeatedly lost. Instead, we favour the alternative ‘preferential pollinator switching’ model that accounts for the specialization among orchid and wasp lineages in terms of similarities in traits among related Neozeleboria. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 381–395.  相似文献   

14.
By mimicking shape and female mating pheromones, flowers of sexually deceptive orchids attract sexually excited males which pollinate them while trying to copulate. Although many studies have demonstrated the crucial importance of odour signals in these systems, most flowers pollinated by pseudocopulation resemble, at least superficially, an insect body and these visual cues may be important to cheat pollinators. In this 2‐year study, we show that the shape of the labellum of Geoblasta pennicillata is a target of pollinator‐mediated natural selection. Contrary to our expectations, plants with a labellum shape more similar to female wasps were not favoured. The strength and pattern of phenotypic selection varied between study years and sexual functions. Although selection through female success was probably associated to the fine‐tuning of the mechanical fit between flower form and male wasp, shape was the target of natural selection through male success in both study years indicating that male wasps use this trait when choosing flowers. The imperfect mimicry and patterns of selection observed indicated that an exact imitation is not needed to attract and deceive the pollinators and they suggested a receiver perceptual bias towards uncommon phenotypes.  相似文献   

15.
Sexually deceptive Chiloglottis orchids lure their male thynnine wasp pollinators to the flower by emitting semiochemicals that mimic the specific sex pheromone of the wasp. Sexual deception is possible because chemical rather than visual cues play the key role in wasp mate search, suggesting that cryptic wasp species may be frequent. We investigated this prospect among Neozeleboria wasp pollinators of Chiloglottis orchids, drawing on evidence from molecular phylogenetic analysis at three genes (CO1, rhodopsin and wingless), population genetic and statistical parsimony analysis at CO1, orchid associations and their semiochemicals, and geographic ranges. We found a compelling relationship between genetically defined wasp groups, orchid associations, semiochemicals and geographic range, despite a frequent lack of detectable morphological differences. Our findings reveal multiple cryptic species among orchid pollinators and indicate that chemical changes are important for wasp reproductive isolation and speciation. The diversity of Neozeleboria may have enabled, rather than constrained, pollinator-driven speciation in these orchids.  相似文献   

16.
Mechanisms and evolution of deceptive pollination in orchids   总被引:1,自引:0,他引:1  
The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit production. Arguments that deception evolves because rewards are costly are particularly problematic in that small amounts of nectar are unlikely to have a significant effect on the energy budget of orchids, and because reproduction in orchids is often severely pollen-, rather than resource-limited. Several recent experimental studies have shown that deception promotes cross-pollination, but it remains unknown whether actual outcrossing rates are generally higher in deceptive orchids. Our review of the literature shows that there is currently no evidence that deceptive orchids carry higher levels of genetic load (an indirect measure of outcrossing rate) than their rewarding counterparts. Cross-pollination does, however, result in dramatic increases in seed quality in almost all orchids and has the potential to increase pollen export (by reducing pollen discounting). We suggest that floral deception is particularly beneficial, because of its promotion of outcrossing, when pollinators are abundant, but that when pollinators are consistently rare, selection may favour a nectar reward or a shift to autopollination. Given that nectar-rewardlessness is likely to have been the ancestral condition in orchids and yet is evolutionarily labile, more attention will need to be given to explanations as to why deception constitutes an 'evolutionarily stable strategy'.  相似文献   

17.
Chemical communication in the sexually deceptive orchid genus Cryptostylis   总被引:2,自引:0,他引:2  
Pollination by sexual deception is among the most intriguing of orchid pollination syndromes. Odours are well established as the primary stimuli for sexually attracting the male insect pollinators in these orchids. We applied gas chromatography with electroantennographic detection (GC-EAD) to investigate chemical communication between the sympatric, but morphologically distinct, orchids Cryptostylis erecta and C. subulata and their pollinators. Cryptostylis is unusual among sexually deceptive orchid genera in that all five Australian species share the same pollinator, the ichneumonid wasp Lissopimpla excelsa , but hybrids are unknown. We show that volatile odour compounds are not produced in detectable amounts in either species. Floral extracts containing many low-volatility compounds showed considerable differences in composition between C. erecta and C. subulata . By contrast, GC-EAD revealed the male wasp pollinators are electrophysiologically responsive to the same GC peak on two different kinds of GC column in both orchids. This leads us to predict that a single compound is the sexual attractant in all Australian Cryptostylis . The apparent conservation of chemical signals among distinct species contrasts with that of other sexually deceptive orchids that are often morphologically similar but reproductively isolated by their different chemical signals.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 199–205.  相似文献   

18.
In animal-pollinated plants with unisexual flowers, sexual dimorphism in floral traits may be the consequence of pollinator-mediated selection. Experimental investigations of the effects of variation in flower size and floral display on pollinator visitation can provide insights into the evolution of floral dimorphism in dioecious plants. Here, we investigated pollinator responses to experimental arrays of dioecious Sagittaria latifolia in which we manipulated floral display and flower size. We also examined whether there were changes in pollinator visitation with increasing dimorphism in flower size. In S. latifolia, males have larger flowers and smaller floral displays than females. Visitation by pollinators, mainly flies and bees, was more frequent for male than for female inflorescences and increased with increasing flower size, regardless of sex. The number of insect visits per flower decreased with increasing floral display in males but remained constant in females. Greater sexual dimorphism in flower size increased visits to male inflorescences but had no influence on the number of visits to female inflorescences. These results suggest that larger flower sizes would be advantageous to both females and males, and no evidence was found that females suffer from increased flower-size dimorphism. Small daily floral displays may benefit males by allowing extended flowering periods and greater opportunities for effective pollen dispersal.  相似文献   

19.
Approximately one-third of the world's estimated 30,000 orchid species are deceptive and do not reward their pollinators with nectar or pollen [1]. Most of these deceptive orchids imitate the scent of rewarding flowers or potential mates [2] and [3]. In this study, we investigated the floral scent involved in pollinator attraction to the rewardless orchid Dendrobium sinense, a species endemic to the Chinese island Hainan that is pollinated by the hornet Vespa bicolor. Via chemical analyses and electrophysiological methods, we demonstrate that the flowers of D. sinense produce (Z)-11-eicosen-1-ol and that the pollinator can smell this compound. This is a major compound in the alarm pheromones of both Asian (Apis cerana) and European (Apis mellifera) honey bees [4] and [5] and is also exploited by the European beewolf (Philanthus triangulum) to locate its prey [6]. This is the first time that (Z)-11-eicosen-1-ol has been identified as a floral volatile. In behavioral experiments, we demonstrate that the floral scent of D. sinense and synthetic (Z)-11-eicosen-1-ol are both attractive to hornets. Because hornets frequently capture honey bees to feed to their larvae, we suggest that the flowers of D. sinense mimic the alarm pheromone of honey bees in order to attract prey-hunting hornets for pollination.  相似文献   

20.
Non‐rewarding orchids rely on various ruses to attract their pollinators. One of the most common is for them to resemble flowers sought by insects as food sources. This can range from generalized food deception to the mimicry of specific sympatric food plants. We investigated the basis of pollinator deception in the European food‐deceptive orchid Traunsteinera globosa, which has unusually compact flowerheads resembling those of sympatric rewarding species of Knautia and Scabiosa (Dipsacaceae), and Valeriana (Caprifoliaceae). Visual signals of T. globosa are similar in both fly and bee vision models to those of the sympatric food plants used in the choice experiments, but scent signals are divergent. Field experiments conducted in Austria and the Czech Republic showed that both naive and experienced (with respect to visitation of T. globosa) insect species approached the orchids at the same rate as food plants, but direct contact with orchid flowers was taxon specific. Flies were most easily duped into probing the orchid, and, in doing so, frequently received and deposited pollinaria, whereas most bees and butterflies avoided landing on orchid flowers. We conclude that T. globosa is a mimic of a guild of fly‐pollinated plants, but the ecological dependence of the orchid on its models remains to be fully tested. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 269–294.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号