首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polygalacturonases hydrolyze the alpha-(1-4) glycosidic bonds of de-esterified pectate in the smooth region of the plant cell wall. Crystal structures of polygalacturonase from Aspergillus aculeatus were determined at pH 4.5 and 8.5 both to 2.0 A resolution. A. aculeatus polygalacturonase is a glycoprotein with one N and ten O-glycosylation sites and folds into a right-handed parallel beta-helix. The structures of the three independent molecules are essentially the same, showing no dependency on pH or crystal packing, and are very similar to that of Aspergillus niger polygalacturonase. However, the structures of the long T1 loop containing a catalytic tyrosine residue are significantly different in the two proteins. A three-dimensional model showing the substrate binding mode for a family 28 hydrolase was obtained by a combined approach of flexible docking, molecular dynamics simulations, and energy minimization. The octagalacturonate substrate was modeled as an unbent irregular helix with the -1 ring in a half-chair ((4)H(3)) form that approaches the transition state conformation. A comparative modeling of the three polygalacturonases with known structure shows that six subsites ranging from -4 to +2 are clearly defined but subsites -5 and +3 may or may not be shaped depending on the nearby amino acid residues. Both distal subsites are mostly exposed to the solvent region and have weak binding affinity even if they exist. The complex model provides a clear explanation for the functions, either in catalysis or in substrate binding, of all conserved amino acid residues in the polygalacturonase family of proteins. Modeling suggests that the role of the conserved Asn157 and Tyr270, which had previously been unidentified, may be in transition state stabilization. In A. niger polygalacturonase, the long T1 loop may have to undergo conformational change upon binding of the substrate to bring the tyrosine residue close to subsite -1.  相似文献   

2.
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252→Ser (D252S), Glu (D252E) and Glu283→Gln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites −1 and +1 glucose.  相似文献   

3.
Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.  相似文献   

4.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

5.
A Varrot  M Schülein  G J Davies 《Biochemistry》1999,38(28):8884-8891
The mechanisms of crystalline cellulose degradation by cellulases are of paramount importance for the exploitation of these enzymes in applied processes, such as biomass conversion. Cellulases have traditionally been classified into cellobiohydrolases, which are effective in the degradation of crystalline materials, and endoglucanases, which appear to act on "soluble" regions of the substrate. Humicola insolensCel6A (CBH II) is a cellobiohydrolase from glycoside hydrolase family 6 whose native structure has been determined at 1.9 A resolution [Varrot, A., Hastrup, S., Schülein, M., and Davies, G. J. (1999) Biochem. J. 337, 297-304]. Here we present the structure of the catalytic core domain of Humicola insolens cellobiohydrolase II Cel6A in complex with glucose/cellotetraose at 1.7 A resolution. Crystals of Cel6A, grown in the presence of cellobiose, reveal six binding subsites, with a single glucose moiety bound in the -2 subsite and cellotetraose in the +1 to +4 subsites. The complex structure is strongly supportive of the assignment of Asp 226 as the catalytic acid and consistent with proposals that Asp 405 acts as the catalytic base. The structure undergoes several conformational changes upon substrate binding, the most significant of which is a closing of the two active site loops (residues 174-196 and 397-435) with main-chain movements of up to 4.5 A observed. This complex not only defines the polysaccharide-enzyme interactions but also provides the first three-dimensional demonstration of conformational change in this class of enzymes.  相似文献   

6.
M Inoue  H Yamada  T Yasukochi  T Miki  T Horiuchi  T Imoto 《Biochemistry》1992,31(42):10322-10330
The "right-sided" and "left-sided" substrate binding modes at the lower saccharide binding subsites (D-F sites) of chicken lysozyme were investigated by utilizing mutant lysozymes secreted from yeast. We constructed the following mutant lysozymes; "left-sided" substitution of Asn46 to Asp, deletion of Thr47, and insertion of Gly between Thr47 and Asp48 and "right-sided" substitution of Asn37 to Gly. Analyses of their activities and substrate binding abilities showed that Asn46 and Thr47 are involved in the initial enzyme-substrate complex and Asn37 is involved in the transition state. These results support an earlier proposal that interactions between substrate and residues at the left side of lysozyme stabilize a catalytically inactive enzyme-substrate complex, while interactions between substrate and residues at the right side stabilize the catalytically active complex [Pincus, M. R., & Scheraga, H. A. (1979) Macromolecules 12, 633-644]. These results are also consistent with the proposed kinetic mechanism for lysozyme reaction that the rearrangement of an initial enzyme-substrate complex (beta-complex) to another complex (gamma-complex) is required for catalytic hydrolysis [Banerjee S. K., Holler, E., Hess, G. P., & Rupley, J. A. (1975) J. Biol. Chem. 250, 4355-4367].  相似文献   

7.
Cellooligosaccharides were computationally docked using AutoDock into the active sites of the glycoside hydrolase Family 6 enzymes Hypocrea jecorina (formerly Trichoderma reesei) cellobiohydrolase and Thermobifida fusca endoglucanase. Subsite -2 exerts the greatest intermolecular energy in binding beta-glucosyl residues, with energies progressively decreasing to either side. Cumulative forces imparting processivity exerted by these two enzymes are significantly less than by the equivalent glycoside hydrolase Family 7 enzymes studied previously. Putative subsites -4, -3, +3, and +4 exist in H. jecorina cellobiohydrolase, along with putative subsites -4, -3, and +3 in T. fusca endoglucanase, but they are less important than subsites -2, -1, +1, and +2. In general, binding adds 3-7 kcal/mol to ligand intramolecular energies because of twisting of scissile glycosidic bonds. Distortion of beta-glucosyl residues to the (2)S(O) conformation by binding in subsite -1 adds approximately 7 kcal/mol to substrate intramolecular energies.  相似文献   

8.
G André  A Buléon  R Haser  V Tran 《Biopolymers》1999,50(7):751-762
In the first two papers of this series, the tools necessary to evaluate substrate ring deformations were developed, and then the modeling of short amylose fragments (maltotriose and maltopentaose) inside the catalytic site of barley alpha-amylase was performed. In this third paper, this docking has been extended to the whole catalytic cleft. A systematic approach to extend the substrate was used on the reducing side from the previous enzyme/pentasaccharide complex. However, due to the lack of an obvious subsite at the nonreducing side, an alternate protocol has been chosen that incorporates biochemical information on the enzyme and features on the substrate shape as well. As a net result, ten subsites have been located consistent with the distribution of Ajandouz et al. (E. H. Ajandouz, J. Abe, B. Svensson, and G. Marchis-Mouren, Biochimica Biophysica Acta, 1992, Vol. 1159, pp. 193-202) and corresponding binding energies were estimated. Among them, two extreme subsites (-6) and (+4), with stacking residues Y104 and Y211, respectively, have strong affinities with glucose rings added to the substrate. No other deformation has been found for the new glucose rings added to the substrate; therefore, only ring A of the DP 10 fragment has a flexible form when interacting with the inner stacking residues Y51. Global conservation of the helical shape of the substrate can be postulated in spite of its significant distortion at subsite (-1).  相似文献   

9.
We have investigated the mechanism of the interaction of Streptomyces sp. N174 chitosanase with glucosamine hexasaccharide [(GlcN)(6)] by site-directed mutagenesis, thermal unfolding, and (GlcN)(6) digestion experiments, followed by theoretical calculations. From the energy-minimized model of the chitosanase-(GlcN)(6) complex structure (Marcotte et al., 1996), Asp57, which is present in all known chitosanases, was proposed to be one of the amino acid residues that interacts with the oligosaccharide substrate. The chitosanase gene was mutated at Asp57 to Asn (D57N) and Ala (D57A), and the relative activities of the mutated chitosanases were found to be 72 and 0.5% of that of the wild type, respectively. The increase in the transition temperature of thermal unfolding (T(m)), usually observed upon the addition of (GlcN)(n) to chitosanase mutants unaffected in terms of substrate binding, was considerably suppressed in the D57A mutant. These data suggest that Asp57 is important for substrate binding. The experimental time-courses of [(GlcN)(6)] degradation were analyzed by a theoretical model in order to obtain the binding free energy values of the individual subsites of the chitosanases. A (-3, -2, -1, +1, +2, +3) subsite model agreed best with the experimental data. This analysis also indicated that the mutation of Asp57 affects substrate affinity at subsite (-2), suggesting that Asp57 most likely participates in the substrate binding at this subsite.  相似文献   

10.
Glycoside hydrolase family 77 (GH77) belongs to the alpha-amylase superfamily (Clan H) together with GH13 and GH70. GH77 enzymes are amylomaltases or 4-alpha-glucanotransferases, involved in maltose metabolism in microorganisms and in starch biosynthesis in plants. Here we characterized the amylomaltase from the hyperthermophilic bacterium Thermus thermophilus HB8 (Tt AMase). Site-directed mutagenesis of the active site residues (Asp293, nucleophile; Glu340, general acid/base catalyst; Asp395, transition state stabilizer) shows that GH77 Tt AMase and GH13 enzymes share the same catalytic machinery. Quantification of the enzyme's transglycosylation and hydrolytic activities revealed that Tt AMase is among the most efficient 4-alpha-glucanotransferases in the alpha-amylase superfamily. The active site contains at least seven substrate binding sites, subsites -2 and +3 favoring substrate binding and subsites -3 and +2 not, in contrast to several GH13 enzymes in which subsite +2 contributes to oligosaccharide binding. A model of a maltoheptaose (G7) substrate bound to the enzyme was used to probe the details of the interactions of the substrate with the protein at acceptor subsites +2 and +3 by site-directed mutagenesis. Substitution of the fully conserved Asp249 with a Ser in subsite +2 reduced the activity 23-fold (for G7 as a substrate) to 385-fold (for maltotriose). Similar mutations reduced the activity of alpha-amylases only up to 10-fold. Thus, the characteristics of acceptor subsite +2 represent a main difference between GH13 amylases and GH77 amylomaltases.  相似文献   

11.
A structure of the trisaccharide 2-acetamido-2-deoxy-D-muramic acid-beta (1----4)-2-acetamido-2-deoxy-D-glucose-beta (1----4)-2-acetamido-2-deoxy-D-muramic acid (NAM-NAG-NAM), bound to subsites B, C and D in the active-site cleft of hen egg-white lysozyme has been determined and refined at 1.5 A resolution. The resulting atomic co-ordinates indicate that the NAM residue in site D is distorted from the full 4C1 chair conformation to one in which the ring atoms C-1, C-2, O-5 and C-5 are approximately coplanar, and the hydroxymethyl group is positioned axially (a conformation best described as a sofa). This finding supports the original proposals that suggested the ground-state conformation of the sugar bound in site D is strained to one that more closely resembles the geometry required for the oxocarbonium-ion transition state, the next step along the reaction pathway. Additionally, detailed analysis at 1.5 A resolution of the environments of the catalytic residues Glu35 and Asp52 provides new information on the properties that may allow lysozyme to promote the stabilization of an unusually long-lived oxocarbonium-ion transition state. Intermolecular interactions between the N-acetylmuramic acid residue in site D and the lysozyme molecule that contribute to the saccharide ring distortion include: close packing of the O-3' lactyl group with a hydrogen-bonded "platform" of enzyme residues (Asp52, Asn46, Asn59, Ser50 and Asp48), a close contact between the hydroxymethyl group of ring D and the 2'-acetamido group of ring C and a strong hydrogen-bonded interaction between the NH group of Val109 and O-6 of ring D that stabilizes the observed quasi-axial orientation of the -CH2OH group. Additionally, the structure of this complex shows a strong hydrogen bond between the carboxyl group of Glu35 and the beta-anomeric hydroxyl group of the NAM residue in site D. The hydrogen-bonded environment of Asp52 in the native enzyme and in the complex coupled with the very unfavorable direction of approach of the potential carboxylate nucleophile makes it most unlikely that there is a covalent glycosylenzyme intermediate on the hydrolysis pathway of hen egg-white lysozyme.  相似文献   

12.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

13.
Sierks MR  Svensson B 《Biochemistry》2000,39(29):8585-8592
Molecular recognition using a series of deoxygenated maltose analogues was used to determine the substrate transition-state binding energy profiles of 10 single-residue mutants at the active site of glucoamylase from Aspergillus niger. The individual contribution of each substrate hydroxyl group to transition-state stabilization with the wild type and each mutant GA was determined from the relation Delta(DeltaG()) = -RT ln[(k(cat)/K(M))(x)/(k(cat)/K(M))(y)], where x represents either a mutant enzyme or substrate analogue and y the wild-type enzyme or parent substrate. The resulting binding energy profiles indicate that disrupting an active site hydrogen bond between enzyme and substrate, as identified in crystal structures, not only sharply reduces or eliminates the energy contributed from that particular hydrogen bond but also perturbs binding contributions from other substrate hydroxyl groups. Replacing the active site acidic groups, Asp55, Glu180, or Asp309, with the corresponding amides, and the neutral Trp178 with the basic Arg, all substantially reduced the binding energy contribution of the 4'- and 6'-OH groups of maltose at subsite -1, even though both Glu180 and Asp309 are localized at subsite 1. In contrast, the substitution, Asp176 --> Asn, located near subsites -1 and 1, did not substantially perturb any of the individual hydroxyl group binding energies. Similarly, the substitutions Tyr116 --> Ala, Ser119 --> Tyr, or Trp120 --> Phe also did not substantially alter the energy profiles even though Trp120 has a critical role in directing conformational changes necessary for activity. Since the mutations at Trp120 and Asp176 reduced k(cat) values by 50- and 12-fold, respectively, a large effect on k(cat) is not necessarily accompanied by changes in hydroxyl group binding energy contributions. Two substitutions, Asn182 --> Ala and Tyr306 --> Phe, had significant though small effects on interactions with 3- and 4'-OH, respectively. Binding interactions between the enzyme and the glucosyl group in subsite -1, particularly with the 4'- and 6'-OH groups, play an important role in substrate binding, while subsite 1 interactions may play a more important role in product release.  相似文献   

14.
Glucansucrase or glucosyltransferase (GTF) enzymes of lactic acid bacteria display high sequence similarity but catalyze synthesis of different alpha-glucans (e.g., dextran, mutan, alternan, and reuteran) from sucrose. The variations in glucosidic linkage specificity observed in products of different glucansucrase enzymes appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. This notion was derived from mutagenesis of amino acids of GTFA (reuteransucrase) from Lactobacillus reuteri strain 121 putatively involved in acceptor substrate binding. A triple amino acid mutation (N1134S:N1135E:S1136V) in a region immediately next to the catalytic Asp1133 (putative transition state stabilizing residue) converted GTFA from a mainly alpha-(1-->4) ( approximately 45%, reuteran) to a mainly alpha-(1-->6) ( approximately 80%, dextran) synthesizing enzyme. The subsequent introduction of mutation P1026V:I1029V, involving two residues located in a region next to the catalytic Asp1024 (nucleophile), resulted in synthesis of an alpha-glucan containing only a very small percentage of alpha-(1-->4) glucosidic linkages ( approximately 5%) and a further increased percentage of alpha-(1-->6) glucosidic linkages ( approximately 85%). This changed glucosidic linkage specificity was also observed in the oligosaccharide products synthesized by the different mutant GTFA enzymes from (iso)maltose and sucrose. Amino acids crucial for glucosidic linkage type specificity of reuteransucrase have been identified in this report. The data show that a combination of mutations in different regions of GTF enzymes influences the nature of both the glucan and oligosaccharide products. The amino acids involved most likely contribute to sugar-binding acceptor subsites in glucansucrase enzymes.  相似文献   

15.
Piotukh K  Serra V  Borriss R  Planas A 《Biochemistry》1999,38(49):16092-16104
The carbohydrate-binding site of Bacillus macerans 1,3-1, 4-beta-D-glucan 4-glucanohydrolase has been analyzed through a mutational analysis to probe the role of protein-carbohydrate interactions defining substrate specificity. Amino acid residues involved in substrate binding were proposed on the basis of a modeled enzyme-substrate complex [Hahn, M., Keitel, T., and Heinemann, U. (1995) Eur. J. Biochem. 232, 849-859]. The effects of the mutations at 15 selected residues on catalysis and binding were determined by steady-state kinetics using a series of chromogenic substrates of different degree of polymerization to assign the individual H-bond and hydrophobic contributions to individual subsites in the binding site cleft. The glucopyranose rings at subsites -III and -II are tightly bound by a number of H-bond interactions to Glu61, Asn24, Tyr92, and Asn180. From k(cat)/K(M) values, single H-bonds account for 1.8-2.2 kcal mol(-)(1) transition-state (TS) stabilization, and a charged H-bond contributes up to 3.5 kcal mol(-)(1). Glu61 forms a bidentated H-bond in subsites -III and -II, and provides up to 6.5 kcal mol(-)(1) TS stabilization. With a disaccharide substrate that fills subsites -I and -II, activation kinetics were observed for the wild-type and mutant enzymes except for mutations on Glu61, pointing to an important role of the bidentate interaction of Glu61 in two subsites. Whereas removal of the hydroxyl group of Tyr121, initially proposed to hydrogen-bond with the 2OH of Glcp-I, has essentially no effect (Y121F mutant), side-chain removal (Y121A mutant) gave a 100-fold reduction in k(cat)/K(M) and a 10-fold lower K(I) value with a competitive inhibitor. In subsite -IV, only a stacking interaction with Tyr22 (0.7 kcal mol(-)(1) TS stabilization) is observed.  相似文献   

16.
The structure of the complex between a catalytically compromised family 10 xylanase and a xylopentaose substrate has been determined by X-ray crystallography and refined to 3.2 A resolution. The substrate binds at the C-terminal end of the eightfold betaalpha-barrel of Pseudomonas fluorescens subsp. cellulosa xylanase A and occupies substrate binding subsites -1 to +4. Crystal contacts are shown to prevent the expected mode of binding from subsite -2 to +3, because of steric hindrance to subsite -2. The loss of accessible surface at individual subsites on binding of xylopentaose parallels well previously reported experimental measurements of individual subsites binding energies, decreasing going from subsite +2 to +4. Nine conserved residues contribute to subsite -1, including three tryptophan residues forming an aromatic cage around the xylosyl residue at this subsite. One of these, Trp 313, is the single residue contributing most lost accessible surface to subsite -1, and goes from a highly mobile to a well-defined conformation on binding of the substrate. A comparison of xylanase A with C. fimi CEX around the +1 subsite suggests that a flatter and less polar surface is responsible for the better catalytic properties of CEX on aryl substrates. The view of catalysis that emerges from combining this with previously published work is the following: (1) xylan is recognized and bound by the xylanase as a left-handed threefold helix; (2) the xylosyl residue at subsite -1 is distorted and pulled down toward the catalytic residues, and the glycosidic bond is strained and broken to form the enzyme-substrate covalent intermediate; (3) the intermediate is attacked by an activated water molecule, following the classic retaining glycosyl hydrolase mechanism.  相似文献   

17.
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].  相似文献   

18.
Xylanases are the enzymes that breakdown complex plant cell wall polysaccharide xylan into xylose by hydrolysing the β-(1→4) glycosidic linkage between xylosides. They mainly belong to the families GH10 and GH11 of the glycoside hydrolase claβs of enzymes. GH10 xylanases have (α/β)8-barrel type of fold whereas GH11 xylanases have β-jelly roll type of fold. Both enzymes have several substrate binding subsites. This study analysed in detail the sequence and structural conservation of subsites residues by examining their 3D structures crystallized with homoxylan or its non-hydrolysable form as substrate. A total of 19 structures from GH10 and 6 structures from GH11 were analysed. It was found that in GH10 the subsites -3 to -1 consisted of conserved residues, whereas in GH11 subsites -1, -3 and +1 were found to be conserved. The substrate and subsite interaction analysed based on the presence of h-bonds and CH-π interactions showed that Face-to-Face or Edge-to-Face CH-π interactions are formed in the subsites of GH10, whereas such specific CH-π interactions were no at all observed in case of GH11 xylanases. The spatial conservation of subsite residues was also analysed using a distance matrix based approach. It was found that in GH10 xylanases conserved residues have conserved spatial position of those residues as opposed to GH11 enzymes where in subsites -2 and +2 conserved residues showed non-conservation in their spatial positions. The results presented in this study can be used in discovering new xylanases and in the engineering highly efficient xylanases.  相似文献   

19.
Liu Y  Ma LH  Zhang X  Yoshida T  Satterlee JD  La Mar GN 《Biochemistry》2006,45(46):13875-13888
Solution 1H NMR has been used to characterize the active site molecular and electronic structure of the cyanide-inhibited 2,4-dimethyldeuterohemin complex of the heme oxygenase from Neisseria meningitidis (NmHO) with respect to the mode of interaction of the C-terminus with the substrate and the spontaneous "aging" of NmHO that results in the cleavage of the C-terminal Arg208-His209 dipeptide. The structure of the portion involving residues Ala12-Phe192 is found to be essentially identical to that of the protohemin complex in either solution or crystal. However, His207 from the C-terminus is found to interact strongly with the substrate 1CH3, as opposed to the 8CH3 in the protohemin complex. The different mode of interaction of His207 with the alternate substrates is attributed to the 2-vinyl group of protohemin sterically interfering with the optimal orientation of the proximal helix Asp27 carboxylate that serves as acceptor to the strong H-bond by the peptide of His207. The 2,4-dimethyldeuterohemin HO complex "ages" in manner similary to that of protohemin, (Liu, Y., Ma, L.-H., Satterlee, J.D., Zhang, X., Yoshida, T., and La Mar, G. N., (2006) Biochemistry 45, 3875-3886) with mass spectrometry and N-terminal sequencing indicating that the Arg208-His209 dipeptide is cleaved. The 2,4-dimethyldeuterohemin complex of WT HO populates an equilibrium isomer stabilized in low phosphate concentration for which the axial His imidazole ring is rotated by approximately 20 degrees from that in the WT. The His ring reorientation is attributed to Asp24 serving as the H-bond acceptor to the His207 peptide NH, rather than to the His23 ring NdeltaH as in the crystals. The functional implications of the altered C-terminal interaction with substrate modification are discussed.  相似文献   

20.
GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein-ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the -1 and -2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the -3 and +1 subsite showing the spanning of the -1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号