首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH-driven opening and closure of beta-lactoglobulin EF loop, acting as a lid and closing the internal cavity of the protein, has been studied by molecular dynamics (MD) simulations and free energy calculations based on molecular mechanics/Poisson-Boltzmann (PB) solvent-accessible surface area (MM/PBSA) methodology. The forms above and below the transition pH differ presumably only in the protonation state of residue Glu89. MM/PBSA calculations are able to reproduce qualitatively the thermodynamics of the transition. The analysis of MD simulations using a combination of MM/PBSA methodology and the colony energy approach is able to highlight the driving forces implied in the transition. The analysis suggests that global rearrangements take place before the equilibrium local conformation is reached. This conclusion may bear general relevance to conformational transitions in all lipocalins and proteins in general.  相似文献   

2.
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

3.
Zheng K  Ma G  Zhou J  Zen M  Zhao W  Jiang Y  Yu Q  Feng J 《Proteins》2007,66(2):467-479
The phenomenon that SARS coronavirus main protease (SARS M(pro)) dimer is the main functional form has been confirmed by experiment. However, because of the absence of structural information of the monomer, the reasons for this remain unknown. To investigate it, two molecular dynamics (MD) simulations in water for dimer and monomer models have been carried out, using the crystal structure of protomer A of the dimer as the starting structure for the monomer. During the MD simulation of dimer, three interest phenomena of protomer A have been observed: (i) the distance between NE2 of His41 and SG of Cys145 averages 3.72 A, which agrees well with the experimental observations made by X-ray crystallography; (ii) His163 and Glu166 form the "tooth" conformational properties, resulting in the specificity for glutamine at substrate P1 site; and (iii) the substrate-binding pocket formed by loop 140-146 and loop 184-197 is large enough to accommodate the substrate analog. However, during the MD simulation of the monomer complex, the three structural characteristics are all absent, which results directly in the inactivation of the monomer. Throughout the MD simulation of the dimer, the N-terminus of protomer B forms stable hydrogen bonds with Phe140 and Glu166, through which His163, Glu166, and loop 140-146 are kept active form. Furthermore, a water-bridge has been found between the N-terminus of protomer B and Gly170, which stabilizes His172 and avoids it moving toward Tyr161 to disrupt the H-bond between Tyr161 and His163, stabilizing the conformation of His163. The interactions between the N-terminus and another monomer maintain the activity of dimer.  相似文献   

4.
We have made density functional calculations and molecular dynamics (MD) simulations to investigate the structure and pharmacological action of local anesthetics: tetracaine, procaine and lidocaine. The MD simulations were made in a NPT ensemble, in a 0.9% NaCl solution, on both unprotonated and protonated forms of the molecules. The radial distribution function was used to study solvent effects in different regions of the molecules. Although all three anesthetics have different degrees of hydrophobicity, the amino-terminals were the mostly affected by the protonation yielding hydrophilic regions. The charged amino-esters present hydrophilicity on the ester as well as amine terminals. Cl from the solvent solution forms hydrogen bonds via protonated hydrogen attached to nitrogen, yielding neutral molecules, which could, in principle, penetrate the membranes and loose Cl to act in the protonated form. Density functional theory calculations indicated a change in the electrostatic potential and showed that Cl weakly binds to the amine hydrogen, what suggests it is a favorable interaction and supports the existence of the hydrochloric forms of these local anesthetics.  相似文献   

5.
Abstract

Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain)—an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wildtype (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 “small loop” (residues 679–693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4—receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (A724–735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the “small loop” and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

6.
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (approximately 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H+ has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H+(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20.G25 base-pair, to facilitate a conformational switch induced by a protonated C75H+. L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents.  相似文献   

7.
BackgroundTim21, a subunit of a highly dynamic translocase of the inner mitochondrial membrane (TIM23) complex, translocates proteins by interacting with subunits in the translocase of the outer membrane (TOM) complex and Tim23 channel in the TIM23 complex. A loop segment in Tim21, which is in close proximity of the binding site of Tim23, has different conformations in X-ray, NMR and new crystal contact-free space (CCFS) structures. MD simulations can provide information on the structure and dynamics of the loop in solution.MethodsThe conformational ensemble of the loop was characterized using loop modeling and molecular dynamics (MD) simulations.ResultsMD simulations confirmed mobility of the loop. Multidimensional scaling and clustering were used to characterize the dynamic conformational ensemble of the loop. Free energy landscape showed that the CCFS crystal structure occupied a low energy region as compared to the conventional X-ray crystal structure. Analysis of crystal packing indicates that the CCFS provides larger conformational space for the motions of the loop.ConclusionsOur work reported the conformational ensemble of the loop in solution, which is in agreement with the structure obtained from CCFS approach. The combination of the experimental techniques and computational methods is beneficial for studying highly flexible regions of proteins.General significanceComputational methods, such as loop modeling and MD simulations, have proved to be useful for studying conformational flexibility of proteins. These methods in integration with experimental techniques such as CCFS has the potential to transform the studies on flexible regions of proteins.  相似文献   

8.
Dimerization of HIV-1 genomic RNA is initiated by kissing loop interactions at the Dimerization Initiation Site (DIS). Dynamics of purines that flank the 5' ends of the loop-loop helix in HIV-1 DIS kissing complex were explored using explicit solvent molecular dynamics (MD) simulations with the CHARMM force field. Multiple MD simulations (200 ns in total) of X-ray structures for HIV-1 DIS Subtypes A, B, and F revealed conformational variability of flanking purines. In particular, the flanking purines, which in the starting X-ray structures are bulged-out and stack in pairs, formed a consecutive stack of four bulged-out adenines at the beginning of several simulations. This conformation is seen in the crystal structure of DIS Subtype F with no interference from crystal packing, and was frequently reported in our preceding MD studies performed with the AMBER force field. However, as CHARMM simulations progressed, the four continuously stacked adenines showed conformational transitions from the bulged-out into the bulged-in geometries. Although such an arrangement has not been seen in any X-ray structure, it has been suggested by a recent NMR investigation. In CHARMM simulations, in the longer time scale, the flanking purines display the tendency to move to bulged-in conformations. This is in contrast with the AMBER simulations, which indicate a modest prevalence for bulged-out flanking base positions in line with the X-ray data. The simulations also suggest that the intermolecular stacking between purines from the opposite hairpins can additionally stabilize the kissing complex.  相似文献   

9.
Parvalbumins constitute a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. In a previous study (Revett SP, King G, Shabanowitz J, Hunt DF, Hartman KL, Laue TM, Nelson DJ, 1997, Protein Sci 7:2397-2408), we presented the sequence of the major parvalbumin isoform from the silver hake (Merluccius bilinearis) and presented spectroscopic and structural information on the excised "EF-hand" portion of the protein. In this study, the X-ray crystal structure of the silver hake major parvalbumin has been determined to high resolution, in the frozen state, using the molecular replacement method with the carp parvalbumin structure as a starting model. The crystals are orthorhombic, space group C2221, with a = 75.7 A, b = 80.7 A, and c = 42.1 A. Data were collected from a single crystal grown in 15% glycerol, which served as a cryoprotectant for flash freezing at -188 degrees C. The structure refined to a conventional R-value of 21% (free R 25%) for observed reflections in the range 8 to 1.65 A [1 > 2sigma(I)]. The refined model includes an acetylated amino terminus, 108 residues (characteristic of a beta parvalbumin lineage), 2 calcium ions, and 114 water molecules per protein molecule. The resulting structure was used in molecular dynamics (MD) simulations focused primarily on the dynamics of the ligands coordinating the Ca2+ ions in the CD and EF sites. MD simulations were performed on both the fully Ca2+ loaded protein and on a Ca2+ deficient variant, with Ca2+ only in the CD site. There was substantial agreement between the MD and X-ray results in addressing the issue of mobility of key residues in the calcium-binding sites, especially with regard to the side chain of Ser55 in the CD site and Asp92 in the EF site.  相似文献   

10.
The ionization properties of Lys and Glu residues buried in the hydrophobic core of staphylococcal nuclease (SN) suggest that the interior of this protein behaves as a highly polarizable medium with an apparent dielectric constant near 10. This has been rationalized previously in terms of localized conformational relaxation concomitant with the ionization of the internal residue, and with contributions by internal water molecules. Paradoxically, the crystal structure of the SN V66E variant shows internal water molecules and the structure of the V66K variant does not. To assess the structural and dynamical character of interior water molecules in SN, a series of 10-ns-long molecular dynamics (MD) simulations was performed with wild-type SN, and with the V66E and V66K variants with Glu66 and Lys66 in the neutral form. Internal water molecules were identified based on their coordination state and characterized in terms of their residence times, average location, dipole moment fluctuations, hydrogen bonding interactions, and interaction energies. The locations of the water molecules that have residence times of several nanoseconds and display small mean-square displacements agree well with the locations of crystallographically observed water molecules. Additional, relatively disordered water molecules that are not observed crystallographically were found in internal hydrophobic locations. All of the interior water molecules that were analyzed in detail displayed a distribution of interaction energies with higher mean value and narrower width than a bulk water molecule. This underscores the importance of protein dynamics for hydration of the protein interior. Further analysis of the MD trajectories revealed that the fluctuations in the protein structure (especially the loop elements) can strongly influence protein hydration by changing the patterns or strengths of hydrogen bonding interactions between water molecules and the protein. To investigate the dynamical response of the protein to burial of charged groups in the protein interior, MD simulations were performed with Glu66 and Lys66 in the charged state. Overall, the MD simulations suggest that a conformational change rather than internal water molecules is the dominant determinant of the high apparent polarizability of the protein interior.  相似文献   

11.
Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The substrates occupy a shallow and overall hydrophobic cavity proximal to the metal centre of the homo-dimeric enzyme. The linker connecting the C-terminal and N-terminal domains in the monomer is partly disordered in the crystal structure and part of it forms a flexible lid at the entrance of the substrate cavity. This loop has been tentatively assigned a role in the enzyme mechanism: it helps lock the substrate into place. The dynamics of this loop has been investigated by MD simulation. The initial coordinates were taken from the crystal structure of 2,3QD in the presence of the substrate kaempferol (KMP). After equilibration and simulation over 7.2ns the substrate was removed and another equilibration and simulation of 7.2ns was performed. The results show that the structures of the free enzyme as well as of the enzyme-substrate complex are stable in MD simulation. The linker shows strongly enhanced mobility in the loop region that is close to the entrance to the substrate cavity (residues 154-169). Movement of the loop takes place on a timescale of 5-10ns. To confirm the conclusions about the loop dynamics drawn from the 7.2ns simulation, the simulation was extended with another 8ns. When substrate binds into the cavity the loop orders remarkably, although mobility is retained by residues 155-158. Some regions of the loop (residues 154-160 and 164-176) move over a considerable distance and approach the substrate closely, reinforcing the idea that they lock the substrate in the substrate cavity. The enthalpic component of the interaction of the loop with the protein and the KMP appears to favour the locking of the substrate. Two water molecules were found immobilised in the cavity, one of which exhibited rotation on the picosecond timescale. When the substrate is removed, the empty cavity fills up with water within 200ps.  相似文献   

12.
The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.  相似文献   

13.
This paper explores the dependence of the molecular dynamics (MD) trajectory of a protein molecule on the titration state assigned to the molecule. Four 100-ps MD trajectories of bovine pancreatic trypsin inhibitor (BPTI) were generated, starting from two different structures, each of which was held in two different charge states. The two starting structures were the X-ray crystal structure and one of the solution structures determined by NMR, and the charge states differed only in the ionization state of N terminus. Although it is evident that the MD simulations were too short to sample fully the equilibrium distribution of structures in each case, standard Poisson-Boltzmann titration state analysis of the resulting configurations shows general agreement between the overall titration behavior of the protein and the charge state assumed during MD simulation: at pH 7, the total net charge of the protein resulting from the titration analysis is consistently lower for the protein with the N terminus assumed to be neutral than for the protein with the N terminus assumed to be charged. For most of the ionizable residues, the differences in the calculated pKaS among the four trajectories are statistically negligible and remain in good agreement with the data obtained by crystal structure titration and by experiment. The exceptions include the N terminus, which responds directly to the change of its imposed charge; the C terminus, which in the NMR structure interacts strongly with the former; and a few other residues (Arg 1, Glu 7, Tyr 35, and Arg 42) whose pKaS reflect the initial structure and the limited trajectory lengths. This study illustrates the importance of the careful assignment of protonation states at the start of MD simulations and points to the need for simulation methods that allow for the variation of the protonation state in the calculation of equilibrium properties.  相似文献   

14.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

15.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

18.
A computational analysis of d(GGGGTTTTGGGG)(2) guanine quadruplexes containing either lateral or diagonal four-thymidine loops was carried out using molecular dynamics (MD) simulations in explicit solvent, locally enhanced sampling (LES) simulations, systematic conformational search, and free energy molecular-mechanics, Poisson Boltzmann, surface area (MM-PBSA) calculations with explicit inclusion of structural monovalent cations. The study provides, within the approximations of the applied all-atom additive force field, a qualitatively complete analysis of the available loop conformational space. The results are independent of the starting structures. Major conformational transitions not seen in conventional MD simulations are observed when LES is applied. The favored LES structures consistently provide lower free energies (as estimated by molecular-mechanics, Poisson Boltzmann, surface area) than other structures. Unfortunately, the predicted optimal structure for the diagonal loop arrangement differs substantially from the atomic resolution experiments. This result is attributed to force field deficiencies, such as the potential misbalance between solute-cation and solvent-cation terms. The MD simulations are unable to maintain the stable coordination of the monovalent cations inside the diagonal loops as reported in a recent x-ray study. The optimal diagonal and lateral loop arrangements appear to be close in energy although a proper inclusion of the loop monovalent cations could stabilize the diagonal architecture.  相似文献   

19.
Molecular dynamics (MD) simulations of the DNA duplex d(CCAACGTTGG)(2) were used to study the relationship between DNA sequence and structure. Two crystal simulations were carried out; one consisted of one unit cell containing two duplexes, and the other of two unit cells containing four duplexes. Two solution simulations were also carried out, one starting from canonical B-DNA and the other starting from the crystal structure. For many helicoidal parameters, the results from the crystal and solution simulations were essentially identical. However, for other parameters, in particular, alpha, gamma, delta, (epsilon - zeta), phase, and helical twist, differences between crystal and solution simulations were apparent. Notably, during crystal simulations, values of helical twist remained comparable to those in the crystal structure, to include the sequence-dependent differences among base steps, in which values ranged from 20 degrees to 50 degrees per base step. However, in the solution simulations, not only did the average values of helical twist decrease to approximately 30 degrees per base step, but every base step was approximately 30 degrees, suggesting that the sequence-dependent information may be lost. This study reveals that MD simulations of the crystal environment complement solution simulations in validating the applicability of MD to the analysis of DNA structure.  相似文献   

20.
The bacterial outer membrane protein OmpA is composed of an N-terminal 171-residue beta-barrel domain (OmpA(171)) that spans the bilayer and a periplasmic, C-terminal domain of unknown structure. OmpA has been suggested to primarily serve a structural role, as no continuous pore through the center of the barrel can be discerned in the crystal structure of OmpA(171). However, several groups have recorded ionic conductances for bilayer-reconstituted OmpA(171). To resolve this apparent paradox we have used molecular dynamics (MD) simulations on OmpA(171) to explore the conformational dynamics of the protein, in particular the possibility of transient formation of a central pore. A total of 19 ns of MD simulations of OmpA(171) have been run, and the results were analyzed in terms of 1) comparative behavior of OmpA(171) in different bilayer and bilayer-mimetic environments, 2) solvation states of OmpA(171), and 3) pore characteristics in different MD simulations. Significant mobility was observed for residues and water molecules within the beta-barrel. A simulation in which putative gate region side chains of the barrel interior were held in a non-native conformation led to an open pore, with a predicted conductance similar to experimental measurements. The OmpA(171) pore has been shown to be somewhat more dynamic than suggested by the crystal structure. A gating mechanism is proposed to explain its documented channel properties, involving a flickering isomerization of Arg138, forming alternate salt bridges with Glu52 (closed state) and Glu128 (open state).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号