首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tet repressor (TetR) mediates the most important mechanism of bacterial resistance against tetracycline (Tc) antibiotics. In the absence of Tc, TetR is tightly bound to its operator DNA; upon binding of Tc with an associated Mg2+ ion, it dissociates from the DNA, allowing expression of the repressed genes. Its tight control by Tc makes TetR broadly useful in genetic engineering. The Tc binding site is over 20 Å from the DNA, so the binding signal must propagate a long distance. We use molecular dynamics simulations and continuum electrostatic calculations to test two models of the allosteric mechanism. We simulate the TetR:DNA complex, the Tc-bound, “induced” TetR, and the transition pathway between them. The simulations support the model inferred previously from the crystal structures and reveal new details. When [Tc:Mg]+ binds, the Mg2+ ion makes direct and water-mediated interactions with helix 8 of one TetR monomer and helix 6 of the other monomer, and helix 6 is pulled in towards the central core of the structure. Hydrophobic interactions with helix 6 then pull helix 4 in a pendulum motion, with a maximal displacement at its N-terminus: the DNA interface. The crystal structure of an additional TetR reported here corroborates this motion. The N-terminal residue of helix 4, Lys48, is highly conserved in DNA-binding regulatory proteins of the TetR class and makes the largest contribution of any amino acid to the TetR:DNA binding free energy. Thus, the conformational changes lead to a drastic reduction in the TetR:DNA binding affinity, allowing TetR to detach itself from the DNA. Tc plays the role of a specific Mg2+ carrier, whereas the Mg2+ ion itself makes key interactions that trigger the allosteric transition in the TetR:Tc complex.  相似文献   

2.
Single‐domain antibodies (sdAbs) function like regular antibodies, however, consist of only one domain. Because of their low molecular weight, sdAbs have advantages with respect to production and delivery to their targets and for applications such as antibody drugs and biosensors. Thus, sdAbs with high thermal stability are required. In this work, we chose seven sdAbs, which have a wide range of melting temperature (Tm) values and known structures. We applied molecular dynamics (MD) simulations to estimate their relative stability and compared them with the experimental data. High‐temperature MD simulations at 400 K and 500 K were executed with simulations at 300 K as a control. The fraction of native atomic contacts, Q, measured for the 400 K simulations showed a fairly good correlation with the Tm values. Interestingly, when the residues were classified by their hydrophobicity and size, the Q values of hydrophilic residues exhibited an even better correlation, suggesting that stabilization is correlated with favorable interactions of hydrophilic residues. Measuring the Q value on a per‐residue level enabled us to identify residues that contribute significantly to the instability and thus demonstrating how our analysis can be used in a mutant case study.  相似文献   

3.
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

4.
Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro.  相似文献   

5.
6.
The kappa immunoglobulin (Ig) genes from rat kidney and from rat myeloma cells were cloned and analyzed. In kidney DNA one C kappa species is observed by Southern blotting and cloning in phage vectors; this gene most likely represents the embryonic configuration. In the IR52 myeloma DNA two C kappa species are observed: one in the same configuration seen in kidney and one which has undergone a rearrangement. This somatic rearrangement has brought the expressed V region to within 2.7 kb 5' of the C kappa coding region; the rearrangement site is within the J kappa cluster which we have mapped. The rat somatic Ig rearrangement, therefore, closely resembles that seen in mouse Ig genes. In the rat embryonic fragment two J kappa segments were mapped at 2 and 4.3 kb 5' from the C kappa coding region. Therefore, the rat J kappa cluster extends over about 2.3 kb, a region much longer than the 1.4 kb of the mouse and human J kappa clusters. In the region between C kappa and the expressed J kappa of IR52 myeloma DNA, and XbaI site present in the embryonic kappa gene has been lost. A somatic mutation has therefore occurred in the intervening sequence DNA approx. 0.7 kb 3' from the V/J recombination site. Southern blots of rat kidney DNA hybridized with different rat V kappa probes showed non-overlapping sets of bands which correspond to different subgroups, each composed of 8-10 closely related V kappa genes.  相似文献   

7.
The antigen binding fragment (Fab) of a monoclonal antibody (HyHEL-10) consists of variable domains (Fv) and constant domains (CL-CH1). Normal modes have been calculated from the three-dimensional structures of hen egg lysozyme (HEL) with Fab, those of HEL with Fv, and so on. Only a small structural change was found between HEL-Fab and HEL-Fv complexes. However, HEL-Fv had a one order of magnitude lower dissociation constant than HEL-Fab. The Calpha fluctuations of HEL-Fab differed from those of HEL-Fv with normal mode calculation, and the dynamics can be thought to be related to the protein-protein interactions. CL-CH1 may have influence not only around local interfaces between CL-CH1 and Fv, but also around the interacting regions between HEL and Fv, which are longitudinally distant. Eighteen water molecules were found in HEL-Fv around the interface between HEL and Fv compared with one water molecule in HEL-Fab. These solvent molecules may occupy the holes and channels, which may occur due to imperfect complementarity of the complex. Therefore, the suppression of atomic vibration around the interface between Fv and HEL can be thought to be related to favorable and compact interface formation by complete desolvation. It is suggested that the ability to control the antigen-antibody affinity is obtained from modifying the CL-CH1. The second upper loop in the constant domain of the light chain (UL2-CL), which is a conserved gene in several light chains, showed the most remarkable fluctuation changes. UL2-CL could play an important role and could be attractive for modification in protein engineering.  相似文献   

8.
13F6-1-2 is a murine monoclonal antibody that recognizes the heavily glycosylated mucin-like domain of the Ebola virus virion-attached glycoprotein (GP) and protects animals against lethal viral challenge. Here we present the crystal structure, at 2.0 Å, of 13F6-1-2 in complex with its Ebola virus GP peptide epitope. The GP peptide binds in an extended conformation, anchored primarily by interactions with the heavy chain. Two GP residues, Gln P406 and Arg P409, make extensive side-chain hydrogen bond and electrostatic interactions with the antibody and are likely critical for recognition and affinity. The 13F6-1-2 antibody utilizes a rare Vλx light chain. The three light-chain complementarity-determining regions do not adopt canonical conformations and represent new classes of structures distinct from Vκ and other Vλ light chains. In addition, although Vλx had been thought to confer specificity, all light-chain contacts are mediated through germ-line-encoded residues. This structure of an antibody that protects against the Ebola virus now provides a framework for humanization and development of a postexposure immunotherapeutic.  相似文献   

9.
The Sarcolipin (SLN) is a single trans‐membrane protein that can self‐assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) – I17A and I20A, using both coarse‐grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left‐handed helical complex, while mSLNs heterodimers assembled as right‐handed complexes. Analysis of residue‐residue contacts map indicated that isoleucine (Ile)‐leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right‐handed rather than left‐handed helix. AT‐MD simulations for wSLN and mSLNs were also in line with CG‐MD simulations. These results provided the insights for understanding the mechanisms of SLNs self‐assembling. Proteins 2017; 85:1065–1077. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
THIOMABs are recombinant antibodies engineered with reactive cysteines, which can be covalently conjugated to drugs of interest to generate targeted therapeutics. During the analysis of THIOMABs secreted by stably transfected Chinese Hamster Ovary (CHO) cells, we discovered the existence of a new species—Triple Light Chain Antibody (3LC). This 3LC species is the product of a disulfide bond formed between an extra light chain and one of the engineered cysteines on the THIOMAB. We characterized the 3LC by size exclusion chromatography, mass spectrometry, and microchip electrophoresis. We also investigated the potential causes of 3LC formation during cell culture, focusing on the effects of free light chain (LC) polypeptide concentration, THIOMAB amino acid sequence, and glutathione (GSH) production. In studies covering 12 THIOMABs produced by 66 stable cell lines, increased free LC polypeptide expression—evaluated as the ratio of mRNA encoding for LC to the mRNA encoding for heavy chain (HC)—correlated with increased 3LC levels. The amino acid sequence of the THIOMAB molecule also impacted its susceptibility to 3LC formation: hydrophilic LC polypeptides showed elevated 3LC levels. Finally, increased GSH production—evaluated as the ratio of the cell‐specific production rate of GSH (qGSH) to the cell‐specific production rate of THIOMAB (qp)—corresponded to decreased 3LC levels. In time‐lapse studies, changes in extracellular 3LC levels during cell culture corresponded to changes in mRNA LC/HC ratio and qGSH/qp ratio. In summary, we found that cell lines with low mRNA LC/HC ratio and high qGSH/qp ratio yielded the lowest levels of 3LC. These findings provide us with factors to consider in selecting a cell line to produce THIOMABs with minimal levels of the 3LC impurity. Biotechnol. Bioeng. 2010. 105: 748–760. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Fajmut A  Brumen M  Schuster S 《FEBS letters》2005,579(20):4361-4366
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments.  相似文献   

12.
The three-legged or triskelion shape of clathrin is critical for the formation of polyhedral lattices around clathrin-coated vesicles. Filamentous legs radiate from a common vertex, with amino acids 1550–1615 contributed by each leg to define the trimerization domain (Liu S-H, Wong ML, Craik CS, Brodsky FM. Cell 1995; 83: 257–267). Within this amino acid stretch there are 3 cysteines at positions 1565, 1569 and 1573 which are completely conserved in higher mammals from humans to C. elegans . The cysteine-to-serine mutation at position 1573 was observed to have the largest impact on clathrin structure and self-assembly. We have also found that Cysteine 1528 located near the boundary between the proximal region and trimerization domain mediated the formation of nonproductive clathrin aggregates when bound light chain subunits were removed. However, when light chains were added back, the ability of this cysteine to form disulfide bridges between individual clathrin molecules was blocked, suggesting bound light chain interacted with Cysteine 1528 to prevent aggregation. This new information serves to map the orientation of the light chain subunit in the vicinity of the trimerization domain and supports previous models that indicate involvement of the trimerization domain in LC binding (Chen C-Y, Reese ML, Hwang PK, Ota N, Agard D, Brodsky FM. EMBO J 2002; 21: 6072–6082; Pishvaee B, Munn A, Payne GS. EMBO J 1997; 16: 2227–2239).  相似文献   

13.
Molecular dynamics (MD) simulations of immunoglobulin G (IgG) light chain dimer using particle mesh Ewald (PME) and cutoff methods of treating electrostatic interactions were performed. The results indicate that structural parameters (RMSD, radius of gyration, solvent accessible surface) are very similar for both schemes; however, PME simulation shows increased mobility of side chains. This leads to larger fluctuations in the distance between the monomers in the dimer molecule, and, as a consequence, results in decreased number of interactions across the dimer interface. The wall clock time of the simulations was also compared. It was shown that the PME method is approximately 30% faster than the cutoff method for the system studied on a single processor.Figure Backbone order parameters for PME (red) and cutoff (green) calculations. Thick, horizontal lines show stable secondary structures  相似文献   

14.
Hereditary ferritinopathy (HF) is a neurodegenerative disease characterized by intracellular ferritin inclusion bodies (IBs) and iron accumulation throughout the central nervous system. Ferritin IBs are composed of mutant ferritin light chain as well as wild-type light (Wt-FTL) and heavy chain (FTH1) polypeptides. In vitro studies have shown that the mutant light chain polypeptide p.Phe167SerfsX26 (Mt-FTL) forms soluble ferritin 24-mer homopolymers having a specific structural disruption that explains its functional problems of reduced ability to incorporate iron and aggregation during iron loading. However, because ferritins are usually 24-mer heteropolymers and all three polypeptides are found in IBs, we investigated the properties of Mt-FTL/FTH1 and Mt-FTL/Wt-FTL heteropolymeric ferritins. We show here the facile assembly of Mt-FTL and FTH1 subunits into soluble ferritin heteropolymers, but their ability to incorporate iron was significantly reduced relative to Wt-FTL/FTH1 heteropolymers. In addition, Mt-FTL/FTH1 heteropolymers formed aggregates during iron loading, contrasting Wt-FTL/FTH1 heteropolymers and similar to what was seen for Mt-FTL homopolymers. The resulting precipitate contained both Mt-FTL and FTH1 polypeptides as do ferritin IBs in patients with HF. The presence of Mt-FTL subunits in Mt-FTL/Wt-FTL heteropolymers also caused iron loading-induced aggregation relative to Wt-FTL homopolymers, with the precipitate containing Mt- and Wt-FTL polypeptides again paralleling HF. Our data demonstrate that co-assembly with wild-type subunits does not circumvent the functional problems caused by mutant subunits. Furthermore, the functional problems characterized here in heteropolymers that contain mutant subunits parallel those problems previously reported in homopolymers composed exclusively of mutant subunits, which strongly suggests that the structural disruption characterized previously in Mt-FTL homopolymers occurs in a similar manner and to a significant extent in both Mt-FTL/FTH1 and Mt-FTL/Wt-FTL heteropolymers.  相似文献   

15.
The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and conformational changes undergone by full-length human Hsp90beta in solution upon binding of the kinase-specific co-chaperone Cdc37 and two Hsp90 ATPase inhibitors: Radicicol and the first-generation anticancer drug DMAG. Changes in hydrogen exchange pattern in the complexes in regions of Hsp90 remote to the ligand-binding site were observed indicating long-range effects. In particular, the interface between the N-terminal domain and middle domains exhibited significant differences between the apo and complexed forms. For the inhibitors, differences in the interface between the middle domain and the C-terminal domain were also observed. These data provide important insight into the structure of the biologically active form of the protein.  相似文献   

16.

Background

A large fraction of camelid (camels and llamas) antibodies is composed of heavy chain-only homodimers, able to recognise antigens with their variable domain. Events in somatic assembly and maturation of antibodies such as hypermutations and rearrangement of variable loops (CDRs — complementary determining regions) and selection among a wide range of framework variants are generally considered to be random processes.

Methods

An original algorithmic approach (Global Sequence Signature—GSS) was developed, able to take into account multiple functional and/or local sequence properties to detect scattered evolutionary constraints into sequences.

Results

Using the GSS approach, we show that the length of the main hypervariable loop (CDR3) is linked to the nature of 19 surrounding residues on the scaffold. Surprisingly, the relation between CDR3 size and scaffold residues strongly depends on the considered species, illustrating either significant differences in selection mechanisms or functional constraints during antibody maturation.

Conclusions

Combined with the statistical coupling analysis (SCA) approach at the level of scaffold residues, this study has unravelled a robust interaction network on antibody structure surrounding the CDR3 loop.

General significance

In addition to the general applicability of the GSS algorithm, which can bring together functional and sequence data to locate hot spots of constrained evolution, the relationship between CDR3 and scaffold discussed here should be taken into account in protein engineering when designing antibody libraries.  相似文献   

17.
We prepared a new type of skeletal myosin subfragment 1 (S1-MLC1F) containing both, the essential and the regulatory light chains, intact, by exchanging the essential light chains of papain S1 with bacterially expressed longer isoform (MLC1F) of this light chain. We then compared the enzymatic and structural properties of chymotryptic S1, papain S1, and S1-MLC1F in the presence and in the absence of Ca(2+) ions bound to the regulatory light chain. In the presence of Ca(2+), subfragment 1 containing both intact light chains exhibited lower V(max) and lower K(m) for actin activation of S1 ATPase. When S1-MLC1F was cross-linked to actin via the N-terminus of the essential light chain, the yield was much higher when Ca(2+) ions saturated the regulatory light chain. Limited proteolysis of the essential light chain in S1-MLC1F was significantly inhibited in the presence of calcium as compared to chymotryptic S1. We conclude that the effect of binding of Ca(2+) to the regulatory light chain is transmitted to the N-terminal extension of the longer isoform of the essential light chain. The resulting structure of the N-terminus is less susceptible to proteolytic digestion, binds tighter to actin, and has an inhibitory effect on actin-activated myosin ATPase. This new conformation of the N-terminus may be responsible for calcium induced myosin-linked modulation of striated muscle contraction.  相似文献   

18.
Hiraga A  Morrice N  Honda E  Tamura S  Munakata H 《FEBS letters》2006,580(5):1425-1430
Clathrin light chain (CL) b purified from bovine brain postmicrotubule supernatant and identified by mass spectrometry potently inhibited a catalytic activity of a major protein phosphatase (PP) that was copurified with microtubules and recognized by antiPP1 antibodies. CLb similarly affected the catalytic subunit and holoenzyme of the PP, little inhibiting the activity of PP2A. Although the CLb from clathrin-coated vesicles was several hundredfold weaker than our purified CLb, the CLb in the postmicrotubule supernatant, independent of whether it was sedimentable or soluble, was as active as the purified CLb. Thus CLb may be a potent regulator of the PP.  相似文献   

19.
Abstract

Histone deacetylase (HDAC) 10 has been implicated in the pathology of various cancers and neurodegenerative disorders, making the discovery of novel inhibitors of the isoform an important endeavor. However, the unavailability of crystallographic structure of human HDAC10 (hHDAC10) hinders structure-based drug design effort. Previously, we reported the homology modeled structure of human HDAC10 built using the crystallographic structure of Danio rerio (zebrafish) HDAC10 (zHDAC10) (Protein Data Bank (PDB) ID; 5TD7, released on 24 May 2017) as a template. Here, in continuation with our study, both hHDAC10 and zHDAC10, and their respective complexes with trichostatin A (TSA), quisinostat, and the native ligand (in 5TD7), 7-[(3-aminopropyl)amino]-1,1,1-trifluoroheptane-2,2-diol (PDB ID; FKS) were submitted to 100?ns-long unrestrained molecular dynamics (MD) simulations. Comparative analyses of the MD trajectories revealed that zHDAC10 and its complexes displayed higher stability than hHDAC10 and its corresponding complexes over time. Nonetheless, docking of active and inactive set molecules revealed that more reliable conformations of hHDAC10 could be obtained at an extended time period. This study may shed more light on the reliability of hHDAC10 modeled structure for use in selective inhibitor design.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Most proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity. Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. In this study we performed in silico mutation analysis to examine the stability of the double layer five strand aggregates formed by heptapeptide NNFGAIL segment from amyline peptide. This segment is one of the shortest fragments that can form amyloid fibrils similar to those formed by the full length peptide. The mutants obtained by single glycine replacement were also studied to investigate the specificity of the dry self-complementary interface between the neighboring β-sheet layers. The molecular dynamics simulations of the aggregates run for 20 ns at 330 K, the degree of the aggregate disassembly was investigated using several geometry analysis tools: the root mean square deviations of the Cα atoms, root mean square fluctuations per residue, twist angles, interstrand distances, fraction of the secondary structure elements, and number of H-bonds. The analysis shows that most mutations make the aggregates unstable, and their stabilities were dependent to a large extent on the position of replaced residues. Our mutational simulations are in agreement with the pervious experimental observations. We also used free binding energy calculations to determine the role of different components: nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no clear trend in the entropy difference between wildtype and glycine mutants. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent could provide valuable insight into the future computer guided design efforts for the amyloid aggregation inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号