首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase (COX) and its prostanoid metabolites have been implicated in the control of cell survival; however, their role as mitogens remains undefined. To better understand the role of prostanoids on cell growth, we used mouse colon adenocarcinoma (CT26) cells to investigate the role of prostaglandin E(2) (PGE(2)) in cell proliferation. CT26 cells express both COX1 and COX2 and metabolize arachidonic acid to PGE(2.) Treatment with indomethacin, or COX-selective inhibitors, prevents PGE(2) biosynthesis and CT26 cell proliferation. The anti-proliferative effects of COX inhibition are rescued specifically by treatment with PGE(2) or the EP4 receptor-selective agonist PGE(1)-OH via phosphatidylinositol 3-kinase/extracellular signal-regulated kinase (ERK) activation, thus providing a functional link between PGE(2)-induced cell proliferation and EP4-mediated ERK signaling. Indomethacin or COX2 inhibitors, but not COX1 inhibitors, reduced the size and number of CT26-derived tumors in vivo. These inhibitory effects are paralleled by marked declines in the levels of tumor PGE(2), suggesting that their anti-tumor effects are directly associated with the inhibition of COX2 enzymatic activity. The described anti-tumor effects of indomethacin are evident whether it is administered at the time of, or 7 days after, tumor cell injection, suggesting that it has tumor preventive and therapeutic actions. Furthermore, the observation that indomethacin increases the survival rates of tumor-bearing mice, even after withdrawal of the drug, indicates that its effects are long lasting and that it may be potentially useful for the prevention and the clinical management of human cancers.  相似文献   

2.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   

3.
Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) in certain normal and tumor cells is associated with protection against the growth inhibitory effect of reactive aldehydes generated during membrane lipid peroxidation. We found that human lung tumor (A549) cells, which express high levels of ALDH3A1 protein, were significantly less susceptible to the antiproliferative effects of 4-hydroxynonenal compared to human hepatoma HepG2 or SK-HEP-1 cells that lack ALDH3A1 expression. However, A549 cells became susceptible to lipid peroxidation products when they were treated with arachidonic acid. The growth suppression of A549 cells induced by arachidonic acid was associated with increased levels of lipid peroxidation and with reduced ALDH3A1 enzymatic activity, protein, and mRNA levels. Furthermore, arachidonic acid treatment of the A549 cells resulted in an increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma), whereas NF-kappaB binding activity was inhibited. Blocking PPARgamma using a selective antagonist, GW9662, prevented the arachidonic acid-mediated reduction of ALDH3A1 expression as well as the growth inhibition of A549 cells, suggesting the central role of PPARgamma in these phenomena. The increase in PPARgamma and the reduction in ALDH3A1 were also prevented by exposing cells to vitamin E concomitant with arachidonic acid treatment. In conclusion, our data show that the arachidonic acid-induced suppression of A549 cell growth is associated with increased lipid peroxidation and decreased ALDH3A1 expression, which may be due to activation of PPARgamma.  相似文献   

4.
Pleiotrophin (PTN, Ptn) is a widely expressed, developmentally regulated 136 amino acid secreted heparin-binding cytokine. It signals through a unique signaling pathway; the PTN receptor is the transmembrane receptor protein tyrosine phosphatase (RPTP)β/ζ. RPTPβ/ζ is inactivated by PTN, which leads to increased tyrosine phosphorylation of the downstream targets of the PTN/RPTPβ/ζ signaling pathway. Pleiotrophin gene expression is found in cells in early differentiation during different developmental periods. It is upregulated in cells with an early differentiation phenotype in wound repair. The Ptn gene also is a proto-oncogene; PTN is expressed in human tumor cells, and, in cell lines derived from human tumors that express Ptn, Ptn expression is constitutive and thus "inappropriate". Importantly, properties of different cells induced by PTN in PTN-stimulated cells are strikingly similar to properties of highly malignant cells. Furthermore, transformed cells into which Ptn is introduced undergo "switches" to malignant cells of higher malignancy with properties that are strikingly similar to properties of PTN-stimulated cells. These unique features of PTN support the conclusion that constitutive PTN signaling in malignant cells that inappropriately express Ptn functions as a potent tumor promoter. Recently, in confirmation, Ptn targeted by the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model was found to promote breast cancers to a more aggressive breast cancer cell phenotype that morphologically closely resembles scirrhous carcinoma in human; in addition, it promoted a striking increase in tumor angiogenesis and a remarkable degree of remodeling of the micro-environment. Pleiotrophin thus regulates both different normal and pathological functions; collectively, the different studies have uncovered the unique ability of a single cytokine PTN, which signals through the unique PTN/RPTPβ/ζ signaling pathway, to induce the many properties associated with tumor promotion in the malignant cells that constitutively express Ptn and in their microenvironment.  相似文献   

5.
Du WW  Yang BB  Shatseva TA  Yang BL  Deng Z  Shan SW  Lee DY  Seth A  Yee AJ 《PloS one》2010,5(11):e13828
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis.  相似文献   

6.
Thromboxane synthase (TXSA), an enzyme of the arachidonic acid metabolism, is upregulated in human glial tumors and is involved in glioma progression. Here, we analyzed the in vitro and in vivo effects of pharmacological inhibition of TXSA activity on human glioblastoma cells. Furegrelate, a specific inhibitor of TXSA, significantly inhibited tumor growth in an orthotopic glioblastoma model by inducing proapoptotic, antiproliferative, and antiangiogenic effects. Inhibition of TXSA induced a proapoptotic disposition of glioma cells and increased the sensitivity to the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea, significantly prolonging the survival time of intracerebral glioma-bearing mice. Our data demonstrate that the targeted inhibition of TXSA activity improves the efficiency of conventional alkylation chemotherapy in vivo. Our study supports the role of TXSA activity for the progression of malignant glioma and the potential utility of its therapeutic modulation for glioma treatment.  相似文献   

7.
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.  相似文献   

8.
Mutations in the canonical Wnt signaling pathway leading to its activation are known to cause the majority of intestinal tumors. However, few genes targeted by this pathway have been demonstrated to affect tumor development in vivo. Here we show that Tiam1, a selective Rac GTPase activator, is a Wnt-responsive gene expressed in the base of intestinal crypts and up-regulated in mouse intestinal tumors and human colon adenomas. Moreover, by comparing tumor development in APC mutant Min (multiple intestinal neoplasia) mice expressing or lacking Tiam1, we found that Tiam1 deficiency significantly reduces the formation and growth of polyps in vivo. However, invasion of malignant intestinal tumors is enhanced by a lack of Tiam1. In line with this, knock-down of Tiam1 reduced the growth potential of human colorectal cancer cells and their ability to form E-cadherin-based adhesions, a prerequisite for local invasion of tumor cells. Our data indicate a novel cross-talk between Tiam1-Rac and canonical Wnt-signaling pathways that influences intestinal tumor formation and progression.  相似文献   

9.

Background

The phosphatidylinositol 3-kinase–regulated protein kinase, Akt, plays an important role in the initiation and progression of human cancer. Mammalian cells express three Akt isoforms (Akt1–3), which are encoded by distinct genes. Despite sharing a high degree of amino acid identity, phenotypes observed in knockout mice suggest that Akt isoforms are not functionally redundant. The relative contributions of the different Akt isoforms to oncogenesis, and the effect of their deficiencies on tumor development, are not well understood.

Methods

Here we demonstrate that Akt isoforms have non-overlapping and sometimes opposing functions in tumor initiation and progression using a viral oncogene-induced mouse model of lung cancer and Akt isoform-specific knockout mice.

Results

Akt1 ablation significantly delays initiation of lung tumor growth, whereas Akt2 deficiency dramatically accelerates tumorigenesis in this mouse model. Ablation of Akt3 had a small, not statistically significant, stimulatory effect on tumor induction and growth by the viral oncogene. Terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling and Ki67 immunostaining of lung tissue sections revealed that the delayed tumor induction in Akt1−/− mice was due to the inhibitory effects of Akt1 ablation on cell growth and survival. Conversely, the accelerated growth rate of lung tumors in Akt2−/− and Akt3−/− mice was due to increased cell proliferation and reduced tumor cell apoptosis. Investigation of Akt signaling in tumors from Akt knockout mice revealed that the lack of Akt1 interrupted the propagation of signaling in tumors to the critical downstream targets, GSK-3α/β and mTOR.

Conclusions

These results demonstrate that the degree of functional redundancy between Akt isoforms in the context of lung tumor initiation is minimal. Given that this mouse model exhibits considerable similarities to human lung cancer, these findings have important implications for the design and use of Akt inhibitors for the treatment of lung cancer.  相似文献   

10.
11.
Many late-stage cancer cells express Fas ligand (FasL) and show high malignancy with metastatic potential. We report here a novel signaling mechanism for FasL that hijacks the Met signal pathway to promote tumor metastasis. FasL-expressing human tumor cells express a significant amount of phosphorylated Met. The down-regulation of FasL in these cells led to decreased Met activity and reduced cell motility. Ectopic expression of human FasL in NIH3T3 cells significantly stimulated their migration and invasion. The inhibition of Met and Stat3 activities reverted the FasL-associated phenotype. Notably, FasL variants activated the Met pathway, even though most of their intracellular domain or Fas binding sites were deleted. FasL interacted with Met through the FasL(105-130) extracellular region in lipid rafts, which consequently led to Met activation. Knocking down Met gene expression by RNAi technology reverted the FasL-associated motility to basal levels. Furthermore, treatment with synthetic peptides corresponding to FasL(117-126) significantly reduced the FasL/Met interaction, Met phosphorylation, and cell motility of FasL(+) transfectants and tumor cells. Finally, the transfectants of truncated FasL showed strong anchorage-independent growth and lung metastasis potential in null mice. Collectively, our results establish the FasL-Met-Stat3 signaling pathway and explains the metastatic phenotype of FasL-expressing tumors.  相似文献   

12.
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.KEY WORDS: Glioblastoma, Mouse model, PI3K and MEK inhibition, Apoptosis  相似文献   

13.
ST1481 (gimatecan) is a novel lipophilic camptothecin with a promising preclinical pharmacological profile. On the basis of its high antitumor efficacy when delivered by the oral route, the compound is suitable for prolonged administration. This schedule of treatment has been reported as the most appropriate to exploit the antiangiogenic effects of cytotoxic drugs. The aim of the study was to investigate the antiangiogenic and antitumor effects of oral ST1481 in human tumor xenografts. In spite of a marginal drug effect against the s.c. growing A549 lung carcinoma following administration with an intermittent schedule (q4dx4 times, maximum tolerated dose: 2 mg/kg), tumor growth was strongly inhibited by a daily low-dose (0.5 mg/kg) prolonged administration. Immunohistochemical analysis showed a reduced number of microvessels in tumors of both treated groups versus controls and a significantly higher reduction in the daily versus the q4dx4-treated tumors (P < 0.0001, by Student's t test). In our experimental model, the relation between microvessel density and tumor size (r = 0.738, by the Spearman rank test) suggests a role of inhibition of tumor vasculature in tumor response. Significant inhibition of tumor angiogenesis (P < 0.0001 versus control tumors) was observed even with a very low drug dose (0.06 mg/kg) in the orthotopically implanted (i.d.) MeWo melanoma, under conditions causing minimal tumor growth inhibition. Additional evidences of the antiangiogenic activity of ST1481 were provided by antimotility effects on endothelial cells, in vivo inhibition of vascularization in the Matrigel assay, and down-regulation of the expression of the proangiogenic basic fibroblast growth factor in A549 tumor cells associated with inhibition of the pathway involving Akt. In conclusion, the available results support the possibility that the antiangiogenic properties of ST1481 contribute to its antitumor potential and that this effect might be enhanced by the continuous low-dose treatment.  相似文献   

14.
Several lines of evidence support the beneficial effect of tocotrienol (T3; an unsaturated vitamin E) on inhibition of tumor development. Many factors, including decrease in oxidative stress and modulation of cell signaling pathways in tumor and endothelial cells, have been implicated in such anticancer action of T3, while the in vivo potency and exact intracellular mechanisms for the anticancer properties of T3 remain not fully understood. We have hypothesized that the inhibitory effect of T3 on cancer may be attributable to the antiangiogenic activity of T3, and we found that T3 acts as a potent regulator of growth-factor-dependent signaling in endothelial cells and as an antiangiogenic agent minimizing tumor growth. In this work, we review the history and biological action (i.e., anticancer) of vitamin E and describe current research on the antiangiogenic effects of T3 and its mechanisms.  相似文献   

15.
We demonstrated that arachidonic acid inhibits growth and induces apoptosis in the bcr-abl transformed leukemia cell line, H7.bcr-abl A54 and in human chronic myeloid leukemia hematopoietic cells. This investigation was undertaken to determine the cell-type specificity of this response. We compared the effect of arachidonic acid on H7.bcr-abl A54 cells to Jurkat (human acute T-cell leukemia), U937 (human histiocytic lymphoma) and RPMI 7666 (human normal B-lymphoblasts) cells. Arachidonic acid (100 microM, 72 h) inhibited growth of H7.bcr-abl A54, Jurkat and U937 cells by 82.2, 67.5 and 20%, respectively, but had no effect on RPMI 7666 cells. These effects were investigated in relationship to the activation of p38 mitogen activated protein kinase (p38 MAPK) and c-jun amino-terminal kinase (JNK) by arachidonic acid in these cell lines. Results from these studies suggest that signaling and proliferative responses to arachidonic acid are cell-type specific. Leukemia cells appear to be more sensitive to the antiproliferative effect of arachidonic acid than normal cells.  相似文献   

16.
The dietary cis-polyunsaturated fatty acid, arachidonic acid, stimulates adhesion of metastatic human breast carcinoma cells (MDA-MB-435) to the extracellular matrix, but the molecular mechanisms by which fatty acids modify the behavior of these cells are unclear. Exposure to arachidonic acid activates multiple signaling pathways. Activation of p38 mitogen-activated protein kinase (p38 MAPK) is required for increased cell adhesion to type IV collagen, and this activation is sensitive to inhibitors of lipoxygenases, suggesting a requirement for arachidonic acid metabolism. The goals of the current study were to identify the one or more key metabolites of arachidonic acid that are responsible for activation of p38 MAPK and to elucidate the upstream kinases that lead to p38 MAPK activation. High performance liquid chromatographic analysis revealed that MDA-MB-435 cells metabolize exogenous arachidonic acid predominantly to 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE). Immunoblot analysis with antibodies specific to 15(S)-lipoxygenase-1 (LOX-1) and 15(S)-lipoxygenase-2 (LOX-2) demonstrated the expression of 15-LOX-2, but not 15-LOX-1, in these tumor cells. A LOX inhibitor, nordihydroguaiaretic acid, attenuated production of 15(S)-HETE and inhibited the phosphorylation of p38 MAPK following exposure to arachidonic acid. In contrast, overexpression of LOX-2 sensitized the cells to the addition of arachidonic acid, leading to increased activation of p38 MAPK. Addition of exogenous 15(S)-HETE to MDA-MB-435 cells stimulated cell adhesion to type IV collagen and activated the p38 MAPK pathway, including the upstream kinases transforming growth factor-beta1-activated protein kinase-1 (TAK1) and MAPK kinase 6. Transfection of these cells with a dominant negative form of TAK1 blocked arachidonic acid-stimulated p38 MAPK phosphorylation. These data demonstrate that 15(S)-LOX-2 generation of 15(S)-HETE activates specific growth factor receptor-related signaling pathways, thereby initiating signal transduction events leading to increased cell adhesion to the extracellular matrix.  相似文献   

17.
Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy.  相似文献   

18.
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.  相似文献   

19.
Solid malignancies contain sphere-forming stem-like cells that are particularly efficient in propagating tumors. Identifying agents that target these cells will advance the development of more effective therapies. Recent converging evidence shows that c-Met expression marks tumor-initiating stem-like cells and that c-Met signaling drives human glioblastoma multiforme (GBM) cell stemness in vitro. However, the degree to which tumor-propagating stem-like cells depend on c-Met signaling in histologically complex cancers remains unknown. We examined the effects of in vivo c-Met pathway inhibitor therapy on tumor-propagating stem-like cells in human GBM xenografts. Animals bearing pre-established tumor xenografts expressing activated c-Met were treated with either neutralizing anti- hepatocyte growth factor (HGF) monoclonal antibody L2G7 or with the c-Met kinase inhibitor PF2341066 (Crizotinib). c-Met pathway inhibition inhibited tumor growth, depleted tumors of sphere-forming cells, and inhibited tumor expression of stem cell markers CD133, Sox2, Nanog, and Musashi. Withdrawing c-Met pathway inhibitor therapy resulted in a substantial rebound in stem cell marker expression concurrent with tumor recurrence. Cells derived from xenografts treated with anti-HGF in vivo were depleted of tumor-propagating potential as determined by in vivo serial dilution tumor-propagating assay. Furthermore, daughter xenografts that did form were 12-fold smaller than controls. These findings show that stem-like tumor-initiating cells are dynamically regulated by c-Met signaling in vivo and that c-Met pathway inhibitors can deplete tumors of their tumor-propagating stem-like cells.  相似文献   

20.
Zeng L  Wu GZ  Goh KJ  Lee YM  Ng CC  You AB  Wang J  Jia D  Hao A  Yu Q  Li B 《PloS one》2008,3(6):e2329
DNA damage triggers a network of signaling events that leads to cell cycle arrest or apoptosis. This DNA damage response acts as a mechanism to prevent cancer development. It has been reported that fatty acids (FAs) synthesis is increased in many human tumors while inhibition of fatty acid synthase (FASN) could suppress tumor growth. Here we report that saturated fatty acids (SFAs) play a negative role in DNA damage response. Palmitic acid, as well as stearic acid and myristic acid, compromised the induction of p21 and Bax expression in response to double stranded breaks and ssDNA, while inhibition or knockdown of FASN enhanced these cellular events. SFAs appeared to regulate p21 and Bax expression via Atr-p53 dependent and independent pathways. These effects were only observed in primary mouse embryonic fibroblasts and osteoblasts, but not in immortalized murine NIH3T3, or transformed HCT116 and MCF-7 cell lines. Accordingly, SFAs showed some positive effects on proliferation of MEFs in response to DNA damage. These results suggest that SFAs, by negatively regulating the DNA damage response pathway, might promote cell transformation, and that increased synthesis of SFAs in precancer/cancer cells might contribute to tumor progression and drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号