首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cell envelope (CE) is a specialized structure that is important for barrier function in terminally differentiated stratified squamous epithelia. The CE is formed inside the plasma membrane and becomes insoluble as a result of cross-linking of constituent proteins by isopeptide bonds formed by transglutaminases. To investigate the earliest stages of assembly of the CE, we have studied human epidermal keratinocytes induced to terminally differentiate in submerged liquid culture as a model system for epithelia in general. CEs were harvested from 2-, 3-, 5-, or 7-d cultured cells and examined by 1) immunogold electron microscopy using antibodies to known CE or other junctional proteins and 2) amino acid sequencing of cross-linked peptides derived by proteolysis of CEs. Our data document that CE assembly is initiated along the plasma membrane between desmosomes by head-to-tail and head-to-head cross-linking of involucrin to itself and to envoplakin and perhaps periplakin. Essentially only one lysine and two glutamine residues of involucrin and two glutamines of envoplakin were used initially. In CEs of 3-d cultured cells, involucrin, envoplakin, and small proline-rich proteins were physically located at desmosomes and had become cross-linked to desmoplakin, and in 5-d CEs, these three proteins had formed a continuous layer extending uniformly along the cell periphery. By this time >15 residues of involucrin were used for cross-linking. The CEs of 7-d cells contain significant amounts of the protein loricrin, typically expressed at a later stage of CE assembly. Together, these data stress the importance of juxtaposition of membranes, transglutaminases, and involucrin and envoplakin in the initiation of CE assembly of stratified squamous epithelia.  相似文献   

2.
The epidermal cornified cell envelope (CE) is a complex protein-lipid composite that replaces the plasma membrane of terminally differentiated keratinocytes. This lamellar structure is essential for the barrier function of the skin and has the ability to prevent the loss of water and ions and to protect from environmental hazards. The major protein of the epidermal CE is loricrin, contributing approximately 70% by mass. We have generated mice that are deficient for this protein. These mice showed a delay in the formation of the skin barrier in embryonic development. At birth, homozygous mutant mice weighed less than control littermates and showed skin abnormalities, such as congenital erythroderma with a shiny, translucent skin. Tape stripping experiments suggested that the stratum corneum stability was reduced in newborn Lor(-/-) mice compared with wild-type controls. Isolated mutant CEs were more easily fragmented by sonication in vitro, indicating a greater susceptibility to mechanical stress. Nevertheless, we did not detect impaired epidermal barrier function in these mice. Surprisingly, the skin phenotype disappeared 4-5 d after birth. At least one of the compensatory mechanisms preventing a more severe skin phenotype in newborn Lor(-/-) mice is an increase in the expression of other CE components, such as SPRRP2D and SPRRP2H, members of the family of "small proline rich proteins", and repetin, a member of the "fused gene" subgroup of the S100 gene family.  相似文献   

3.
4.
Hirao T  Takahashi M 《FEBS letters》2005,579(30):6870-6874
Stratum corneum (SC), the outermost layer of the skin, is continuously exposed to oxidative stress via sunlight, lipid peroxidation, and is subsequently accompanied by oxidative modification. Previous studies have shown that major oxidative target proteins in the SC are keratins. However, it remains unclear to date whether cornified envelopes (CEs), protein envelopes of the corneocytes (cornified cells), would be oxidized. In this study, we first revealed oxidative modification of CEs using labeled hydrazide derivatives to detect carbonyl moieties. Carbonylation of CEs was confirmed by reaction with monoclonal antibodies against aldehyde-bound proteins, including anti-acrolein, anti-crotonaldehyde, anti-4-hydroxy-2-nonenal. The extent of carbonylation is stronger in CEs from the face, a sun-exposed area, than those from the inside of upper arm, an unexposed area. Carbonylation of CEs did not depend on their maturity, as evaluated by loss of involucrin antigenicity during maturation process, suggesting that CEs are carbonylated regardless of their maturation stage.  相似文献   

5.
The cornified envelope is a layer of transglutaminase cross-linked protein that is deposited under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We present the sequence of one of the cornified envelope precursors, a protein with an apparent molecular mass of 210 kD. The 210-kD protein is translated from a 6.5- kb mRNA that is transcribed from a single copy gene. The mRNA was upregulated during suspension-induced terminal differentiation of cultured human keratinocytes. Like other envelope precursors, the 210- kD protein became insoluble in SDS and beta-mercaptoethanol on activation of transglutaminases in cultured keratinocytes. The protein was expressed in keratinizing and nonkeratinizing stratified squamous epithelia, but not in simple epithelia or nonepithelial cells. Immunofluorescence staining showed that in epidermal keratinocytes, both in vivo and in culture, the protein was upregulated during terminal differentiation and partially colocalized with desmosomal proteins. Immunogold EM confirmed the colocalization of the 210-kD protein and desmoplakin at desmosomes and on keratin filaments throughout the differentiated layers of the epidermis. Sequence analysis showed that the 210-kD protein is homologous to the keratin- binding proteins desmoplakin, bullous pemphigoid antigen 1, and plectin. These data suggest that the 210-kD protein may link the cornified envelope to desmosomes and keratin filaments. We propose that the 210-kD protein be named "envoplakin."  相似文献   

6.
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.  相似文献   

7.
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.  相似文献   

8.
Cross-linked cornified envelopes are cell structures specifically synthesized by terminally differentiating keratinocytes. They are composed of proteins deposited at the cell periphery under the plasma membrane, and can be purified from epidermis by physicochemical extractions. The resulting keratinocyte "shells" are highly insoluble structures devoid of cytoplasmic components. The rigidity of the stratum corneum cell envelope seems to be one of the essential factors contributing to the physical resistance of this most superficial epidermal layer. We studied the purified cell envelopes from human plantar horny layer to determine their antigenic composition and protein distribution. The extraction protocol consisted of four 10-min cycles of boiling in 10 mM Tris-HCl buffer containing 2% SDS and 1% beta-mercaptoethanol. The absence of any extractable proteins persisting in the purified pellets was checked with SDS-PAGE of the sample electroeluates. Indirect immunofluorescence as well as pre- and post-embedding immunogold labeling for electron microscopy revealed the persistence of several keratinocyte antigenic determinants on the purified substrates. The antibodies directed against involucrin, keratin 10, desmoplakin I + II, desmoglein (intracellular epitope), intercellular corneodesmosome proteins, and filaggrin (a considerably weaker reactivity) labeled the cell envelopes according to the ultrastructural localization pattern characteristic for a given antigen. We conclude that the cytoskeletal and desmosomal components become "embedded" in the highly cross-linked cornified envelope structures during the process of keratinocyte terminal differentiation. This underlines the central role of cornified envelopes in the physical resistance of superficial epidermal layers and indicates a possible importance of junctional proteins in this function.  相似文献   

9.
Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.  相似文献   

10.
Lessons from disorders of epidermal differentiation-associated keratins   总被引:2,自引:0,他引:2  
A number of diseases have been associated with mutations in genes encoding keratin intermediate filaments. Several of these disorders have skin manifestations, in which histological changes highlight the role of various different keratins in epidermal differentiation. For example, mutations in either K1 or K10 (the major keratin pair expressed in differentiated keratinocytes) usually lead to clumped keratin filaments and cytolysis. Furthermore, the precise nature of the mutation has direct implications for disease phenotype. Specifically, mutations in the H1 and alpha-helical rod domains of K1/K10 result in bullous congenital ichthyosiform erythroderma, underscoring the critical role for this keratin filament domain in maintaining cellular integrity. However, a lysine to isoleucine substitution in the V1 domain of K1 underlies a form of palmoplantar keratoderma, which has different cell biological implications. Keratins are cross-linked into the cornified cell envelopes through this particular lysine residue and the consequences of the mutation lead to changes in keratin-desmosome association and cornified cell morphology, suggesting a role for this keratin subdomain in cornified cell envelope formation. Recently, to extend genotype-phenotype correlation, a frameshift mutation in the V2 region of the K1 tail domain was identified in ichthyosis hystrix (Curth-Macklin type), in which keratin filaments show a characteristic shell-like structure and fail to form proper bundles. In this case, the association of desmosomes with loricrin was also altered, implicating this keratin domain in organizing the intracellular distribution of loricrin during cornification. Collectively, these mutations in K1/K10 provide a fascinating insight into both normal and abnormal processes of epidermal differentiation.  相似文献   

11.
Small proline-rich 1 (SPR1) proteins are important for barrier function in stratified squamous epithelia. To explore their properties, we expressed in bacteria a recombinant human SPR1 protein and isolated native SPR1 proteins from cultured mouse keratinocytes. By circular dichroism, they possess no alpha or beta structure but have some organized structure associated with their central peptide repeat domain. The transglutaminase (TGase) 1 and 3 enzymes use the SPR1 proteins as complete substrates in vitro but in different ways: head domain A sequences at the amino terminus were used preferentially for cross-linking by TGase 3, whereas those in head domain B sequences were used for cross-linking by TGase 1. The TGase 2 enzyme cross-linked SPR1 proteins poorly. Together with our data base of 141 examples of in vivo cross-links between SPRs and loricrin, this means that both TGase 1 and 3 are required for cross-linking SPR1 proteins in epithelia in vivo. Double in vitro cross-linking experiments suggest that oligomerization of SPR1 into large polymers can occur only by further TGase 1 cross-linking of an initial TGase 3 reaction. Accordingly, we propose that TGase 3 first cross-links loricrin and SPRs together to form small interchain oligomers, which are then permanently affixed to the developing CE by further cross-linking by the TGase 1 enzyme. This is consistent with the known consequences of diminished barrier function in TGase 1 deficiency models.  相似文献   

12.
The cornified envelope is a layer of transglutaminase cross-linked protein that is assembled under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We have determined the cDNA sequence of one of the proteins that becomes incorporated into the cornified envelope of cultured epidermal keratinocytes, a protein with an apparent molecular mass of 195 kD that is encoded by a mRNA with an estimated size of 6.3 kb. The protein is expressed in keratinizing and nonkeratinizing stratified squamous epithelia and in a number of other epithelia. Expression of the protein is upregulated during the terminal differentiation of epidermal keratinocytes in vivo and in culture. Immunogold electron microscopy was used to demonstrate an association of the 195-kD protein with the desmosomal plaque and with keratin filaments in the differentiated layers of the epidermis. Sequence analysis showed that the 195-kD protein is a member of the plakin family of proteins, to which envoplakin, desmoplakin, bullous pemphigoid antigen 1, and plectin belong. Envoplakin and the 195-kD protein coimmunoprecipitate. Analysis of their rod domain sequences suggests that the formation of both homodimers and heterodimers would be energetically favorable. Confocal immunofluorescent microscopy of cultured epidermal keratinocytes revealed that envoplakin and the 195-kD protein form a network radiating from desmosomes, and we speculate that the two proteins may provide a scaffolding onto which the cornified envelope is assembled. We propose to name the 195-kD protein periplakin.  相似文献   

13.
We have isolated and characterized a full-length cDNA clone encoding human loricrin. Curiously, this protein displays major differences from the recently described mouse loricrin (Mehrel, T., Hohl, D., Nakazawa, H., Rothnagel, J.A., Longley, M.A., Bundman, D., Cheng, C.K., Lichti, U., Bisher, M.E., Steven, A. C., Steinert, P.M., Yuspa, S.H., and Roop, D.R. (1990) Cell 61, 1103-1112). Although both proteins are glycine-serine-cysteine-rich, the sequences have not been conserved. However, analysis of the sequences reveals a common motif of quasi-peptide repeats of an aliphatic or aromatic amino acid residue followed by several glycine and/or serine and cysteine residues. These sequences are interspersed and flanked by short glutamine- or glutamine/lysine-rich peptides. Thus loricrins consist of a family of cell envelope proteins of highly variable sequences that nevertheless retain common structural elements. We show that unlike all other putative protein components of the cell envelope, loricrins are highly insoluble, due at least in part to cross-linking by disulfide bonds. Furthermore, we have isolated four peptides from purified human cell envelopes that contain recognizable loricrin sequences and which are cross-linked by the N epsilon-(gamma-glutamyl)lysine isodipeptide bond. The presence of such bonds thus affords an explanation for the extraordinary insolubility of loricrin by cross-linking to the cell envelope and can also explain the low steady-state levels of monomeric loricrin in cytoskeletal extracts of epidermis. This study represents the first report of this isodipeptide cross-link in a protein component of the cornified cell envelope. We propose a model for the structure of loricrin in which (i) the unusual glycine-serine-rich sequences adopt a flexible loop conformation, indexed on the recurrent aliphatic residues; (ii) inter- or intramolecular isodipeptide and disulfide cross-links induce or stabilize folding of loricrin so as to form a more compact rosette-like structure; and (iii) the presence of the flexible glycine-rich loops necessarily will impact a flexible character to the cell envelope and entire epithelium.  相似文献   

14.
15.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

16.
Infection of human epidermal keratinocytes by the oncogenic virus SV40 leads to progressive inhibition of the normal differentiation process in vitro. Treatment of infected cells with 5-azacytidine (5-aza-CR) over a 24-h period produced a striking enlargement and pronounced flattening of cells within 5-7 days following removal of the agent. This morphological change was accompanied by a several-fold increase in the number of cells staining positively for the cell envelope precursor protein, involucrin, and in the exfoliation of cornified envelope bearing cells from the monolayer. The drug-treated cultures at high passage levels were stained by immunofluorescence using monoclonal antibodies to keratin classes associated with different epidermal layers. These experiments revealed that 5-aza-CR caused the re-expression of two keratin classes (suprabasal and stratum corneum-associated), whose synthesis had been suppressed during the transformation process. 5-Aza-CR also brought about re-expression of 58 and 56 kD keratin markers of epithelial keratinization and stratification, as well as of 40 and 49-52 kD keratin markers of viral transformation. However, the responsiveness to the drug was gradually lost over time following infection.  相似文献   

17.
Mutations in the cornified cell envelope protein loricrin have been reported recently in some patients with Vohwinkel syndrome (VS) and progressive symmetric erythrokeratoderma (PSEK). To establish a causative relationship between loricrin mutations and these diseases, we have generated transgenic mice expressing a COOH-terminal truncated form of loricrin that is similar to the protein expressed in VS and PSEK patients. At birth, transgenic mice (ML.VS) exhibited erythrokeratoderma with an epidermal barrier dysfunction. 4 d after birth, high-expressing transgenic animals showed a generalized scaling of the skin, as well as a constricting band encircling the tail and, by day 7, a thickening of the footpads. Histologically, ML. VS transgenic mice also showed retention of nuclei in the stratum corneum, a characteristic feature of VS and PSEK. Immunofluorescence and immunoelectron microscopy showed the mutant loricrin protein in the nucleus and cytoplasm of epidermal keratinocytes, but did not detect the protein in the cornified cell envelope. Transfection experiments indicated that the COOH-terminal domain of the mutant loricrin contains a nuclear localization signal. To determine whether the ML.VS phenotype resulted from dominant-negative interference of the transgene with endogenous loricrin, we mated the ML.VS transgenics with loricrin knockout mice. A severe phenotype was observed in mice that lacked expression of wild-type loricrin. Since loricrin knockout mice are largely asymptomatic (Koch, P.K., P. A. de Viragh, E. Scharer, D. Bundman, M.A. Longley, J. Bickenbach, Y. Kawachi, Y. Suga, Z. Zhou, M. Huber, et al., J. Cell Biol. 151:389-400, this issue), this phenotype may be attributed to expression of the mutant form of loricrin. Thus, deposition of the mutant protein in the nucleus appears to interfere with late stages of epidermal differentiation, resulting in a VS-like phenotype.  相似文献   

18.
19.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

20.
The human loricrin gene.   总被引:3,自引:0,他引:3  
Loricrin is the major protein component of the cornified cell envelope of terminally differentiated mammalian epidermal (stratum corneum) cells. Using a specific human cDNA clone, we have isolated and characterized the human loricrin gene. We show that it has a very simple structure of a single intron of 1188 base pairs (bp) in the 5'-untranslated region; there are no introns in coding sequences. By use of rodent-human somatic cell hybrids, followed by in situ hybridization with a biotin-labeled genomic DNA clone, the single-copy gene maps to chromosome location 1q21. Polymerase chain reaction analyses of genomic DNAs from different individuals show that human loricrin consists of two allelic size variants, due to sequence variations in its second glycine loop domain, and these variants segregate in the human population by normal Mendelian mechanisms. Furthermore, there are multiple sequence variants within these two size class alleles due to various deletions of 12 bp (4 amino acids) in the major loop of this glycine loop domain. By use of a specific loricrin antibody, we show by immunogold electron microscopy that loricrin initially appears in the granular layer of human epidermis and forms composite keratohyalin granules with profilaggrin, but localizes to the cell periphery (cell envelope) of fully differentiated stratum corneum cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号