首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Gram-negative, strictly aerobic, diplococcoid bacterium (strain D2-3T) was isolated from the biofilter of a recirculating marine aquaculture system. Phylogenetic analysis of the 16S rRNA gene sequence of D2-3T indicated that the new organism occupied a novel lineage within the -1 subclass of Proteobacteria and was related to the genera Rhodothalassium, Azospirillum, Craurococcus, Acidiphilium, and Tistrella. The highest sequence similarity (90.8%) of the 16S rRNA gene sequence of D2-3T was to that of Candidatus “Alysiosphaera europaea”. D2-3T was mesophilic, heterotrophic, required sea salt, and had a pH optimum of 8.0. Growth in the presence of light resulted in the formation of pink colonies, a 25% increased cell yield, and a slightly increased growth rate. D2-3T contained carotenoids and low amounts of bacteriochlorophyll a. Membranes of D2-3T contained b-type cytochromes. The G+C content of the DNA was 60.3±0.1 mol%. Phylogenetic, morphological, physiological, and biochemical analyses demonstrated that D2-3T represented a new aerobic phototrophic genus, for which the name Geminicoccus roseus gen. nov., sp. nov. is proposed for the type species (D2-3T=DSM 18922T=ATCC BAA-1445T).  相似文献   

2.
A strain of Cochliopodium isolated from grassland soil at Sourhope Research Station (Scotland, UK) was found to be identical to the strain “Cochliopodium sp.2” studied by Bark in 1973. We name it Cochliopodium barki. It belongs to a group of species (comprising also C. minus and Cochliopodium sp. “NYS strain”) with very similar scale pattern.  相似文献   

3.
Pseudomonas tolaasii, causing brown blotch disease on cultivated mushrooms, and yielding a white line precipitate towards P. “reactans”, has been shown to induce lysis of erythrocytes. Some Finnish strains isolated from diseased mushroom fruit bodies, although harboring the typical features of P. tolaasii, proved to be distinct, and have been allocated to a nov. sp. P. costantinii. We examined in these study whether all brown blotch causing agents were hemolytic. The induction of erythrocytes lysis seemed to be a rather common feature of mushroom associated-pseudomonads, especially for strains involved in the production of a white-line-in agar.  相似文献   

4.
5.
In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone-hypocone structure, and (2) undulation in either flagella. Instead they display a mosa?c of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina-like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates.  相似文献   

6.
7.
A new marine species of naked lobose amoebae Pseudoparamoeba garorimi n. sp. (Amoebozoa, Dactylopodida) isolated from intertidal marine sediments of Garorim Bay, Korea was studied with light and transmission electron microscopy. This species has a typical set of morphological characters for a genus including the shape of the locomotive form, type of subpseudopodia and the tendency to form the single long waving pseudopodium in locomotion. Furthermore, it has the same cell surface structures as were described for the type species, Pseudoparamoeba pagei: blister‐like glycostyles with hexagonal base and dome‐shaped apex; besides, cell surface bears hair‐like outgrowths. The new species described here lacks clear morphological distinctions from the two other Pseudoparamoeba species, but has considerable differences in the 18S rDNA and COX1 gene sequences. Phylogenetic analysis based on 18S rDNA placed P. garorimi n. sp. at the base of the Pseudoparamoeba clade with high PP/BS support. The level of COX1 sequence divergence was 22% between P. garorimi n. sp. and P. pagei and 25% between P. garorimi n. sp. and P. microlepis. Pseudoparamoeba species are hardly distinguishable by morphology alone, but display clear differences in 18S rDNA and COX1 gene sequences.  相似文献   

8.
Two new marine peritrich ciliates, Epicarchesium corlissi n. sp. and Pseudovorticella jiangi n. sp., were discovered in mariculture waters on the coast of northern China near Qingdao. Their morphology, infraciliature and silverline system were investigated based on both living and silver-impregnated specimens. E. corlissi is characterized as follows: marine Epicarchesium with dichotomously branched stalk; zooids elongate, approximately 60–70×25–35 μm in vivo; peristomial collar double-folded; macronucleus J-shaped; single, small contractile vacuole ventrally positioned; more than 60 striations between peristome and aboral trochal band, 13–18 from aboral trochal band to scopula; abstomal end of row 1 of infundibular polykinety 3 terminating at same level as rows 2 and 3 of infundibular polykinety 3; rows 2 and 3 of infundibular polykinety 3 much longer than row 1 and converging adstomally with infundibular polykinety 1. The new species P. jiangi is diagnosed as follows: marine Pseudovorticella; zooid inverted bell-shaped, approximately 80×60 μm in vivo and with a broad, flat, thin peristomial collar that measures approximately 90 μm across; pellicle with transparent cortical vesicles; macronucleus J-shaped; number of silverlines between peristome and aboral trochal band 20–24, from aboral trochal band to scopula 9–11; abstomal end of row 1 of infundibular polykinety 3 diverges from the other two rows of this polykinety and ends alongside row 3 of infundibular polykinety 2.  相似文献   

9.
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes “progressing” towards a “crown radiation” of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.  相似文献   

10.
Four strains of obligately heterotrophic bacteria isolated from the oxygen-sulfide interface of the Black Sea are characterized. The bacteria are aerobic, Gram-negative, with lemon-like, nonmotile cells. Bacteriochlorophyll a is not detected. They are mesophilic and neutrophilic with a temperature range of 8–35 °C (optimum 25) and pH range of 6.5–8.5 (optimum 7.8). Their growth is NaCl dependent within a range of 5 and 60 (optimum 20) g l−1. They are able to oxidize thiosulfate, sulfide and elemental sulfur to sulfate and to use metabolic energy from these reactions (lithoheterotrophy). According to the level of DNA reassociation of more than 40%, all isolates represent a single generic group. The G+C content of the DNA was in the range of 67.5–69.2 mol%. According to phylogenetic analysis, the new isolates form a separate branch in the alpha-3 subdivision of the Proteobacteria together with two undescribed marine bacterial strains. On the basis of phenotypical and genomic properties, the new isolates are described as a new genus and species Citreicella thiooxidans gen. nov., sp. nov. The type strain is CHLG 1T (=DSM 10146, UNIQEM U 228).  相似文献   

11.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

12.
Two species of amoebae, the marine Pellita catalonica n. g., n. sp. discovered in the Ebro Delta (Spain) and Nivå Bay (Denmark) and the freshwater Pellita digitata n. comb., previously known from the UK and Switzerland and now found in North-Western Russia, have a very thick (0.5–0.8 μm) cell coat consisting of a fuzzy fibrous basal layer, covered with the dense layer of complex pentagonal glycostyles. The cell coat is integrated with the cell membrane and entirely envelops the amoeba, like a typical glycocalyx. For purposes of locomotion and phagocytosis the cell produces short papilliform subpseudopodia that protrude through the cell coat and are covered solely by the cell membrane. In order to accommodate these unusual organisms we established a new family, Pellitidae n. fam., within the subclass Gymnamoebia sensu Page, 1987, order Euamoebida.  相似文献   

13.
Leptomyxid amoebae encompass a diverse assemblage of amoeboid protists that have been implicated as encephalitis-causing agents. This characteristic is attributed to recent studies identifying new members of the Leptomyxidae, in particular, Balamuthia mandrillaris, that cause the disease. Their morphologies range from limax to plasmodial, as well as reticulated and polyaxial. Although systematic studies have identified B. mandrillaris as a new member of the Leptomyxidae, its precise placement within the leptomyxids is uncertain. To further assess the taxonomic placement of Balamuthia among the leptomyxid amoebae and to determine whether the members of the Leptomyxida form a monophyletic assemblage, we have sequenced 16S-like rRNA genes from representatives of three leptomyxid families. Our phylogenetic analyses revealed that current members of the order Leptomyxida do not constitute a monophyletic assemblage. Our analyses clearly show that Gephyramoeba, as well as Balamuthia do not belong in the order Leptomyxida. We highlight where molecular data give differing insights than taxonomic schemes based on traditional characters.  相似文献   

14.
15.
Dysnectes brevis n. gen., n. sp., a free-living heterotrophic flagellate that grows under microaerophilic conditions possesses two flagella. The posterior one lies in a ventral feeding groove, suggesting that this flagellate is an excavate. Our detailed electron microscopic observations revealed that D. brevis possesses all the key ultrastructural characters considered typical of Excavata. Among the 10 excavate groups previously recognized, D. brevis displays an evolutionary affinity to members of the Fornicata (i.e. Carpediemonas, retortamonads, and diplomonads). Firstly, a strong D. brevis-Fornicata affinity was recovered in the phylogenetic analyses of small subunit ribosomal RNA (SSU rRNA) sequences, albeit the internal branching pattern of the D. brevis+Fornicata clade was not resolved with confidence. Corresponding to the SSU rRNA phylogeny, D. brevis and the Fornicata shared the following components of the flagellar apparatus: the arched B fiber bridging the right root; a posterior basal body; and a left root. Combining both morphological and molecular phylogenetic analyses, D. brevis is classified as a new free-living excavate in the Fornicata incertae sedis.  相似文献   

16.
A heterolobosean amoeba strain 6_5F was isolated from an Italian rice field soil. Although 18S rRNA gene sequence analysis demonstrated that the new isolate was closely related to Stachyamoeba sp. ATCC 50324, further molecular analysis and morphological observation showed distinct differences amongst the two. The 5.8S rRNA gene was successfully amplified and sequenced for strain 6_5F but not for strain ATCC 50324. Trophozoites of strain ATCC 50324 transform into flagellate forms in the late stage of incubation before encystment, while strain 6_5F do not show flagellate forms under different conditions of the flagellation test. Light and electron microscopic observation showed the structural difference of cysts of strain 6_5F from strain ATCC 50324 and also from the type strain Stachyamoeba lipophora. The results show that the strain 6_5F is distinct from Stachyamoeba spp. and we propose a new genus and species for this isolate, Vrihiamoeba italica gen. nov., sp. nov.  相似文献   

17.
Body shape differences between two benthophagous, sympatric cichlid species, Ctenopharynx pictus and Otopharynx sp. “heterodon nankhumba” were examined for 14 morphometric characters using measurements obtained from 11 morphological landmarks and additional 6 characters from the head region using principal component and regression analyses. The two species, though not closely related, superficially resemble each other and, being benthic feeders, directly compete for food resources unless morphological differences lead to trophic specialization. Hence, the present study explores the presence of such morphological variations. Principal component analysis (PCA), revealed that only four characters loaded highly on PC II and, therefore, account for most of the variations in the external morphology between the two species. C. pictus has longer lower jaws reflecting longer gape, and a shorter abdominal cavity than O. sp. “heterodon nakhumba”. The regression analyses showed significant differences in the allometric coefficients of the lower jaw and abdominal cavity, which might have contributed to differences in overall shape detected between the two species. The difference in gape size between the two species may be related to different feeding habits employed by each species, and such specializations are suggested to reduce interspecific competition for food resources. We suggest that the ensuing ecological separation promotes sympatry of these two species.  相似文献   

18.
Cavalier-Smith T  Chao EE 《Protist》2012,163(4):574-601
We describe a new tiny naked centrohelid heliozoan, Oxnerella micra, and sequenced its 18S and 28S rRNA genes. Its extremely slender axopodia have prominent extrusomes and are normally stretched across the substratum like those of many tiny granofilosean Cercozoa. Phylogenetic analysis of 18S rDNA shows that Oxnerella does not branch within any of the six known centrohelid families but very deeply in the order Pterocystida, between Choanocystidae and Pterocystidae; therefore we place it in a new family, Oxnerellidae. Oxnerella arose from ancestors with siliceous scales by losing them; as independently did Heterophryidae and Marophryidae, which replaced them by organic spicules, and Chlamydaster that is not truly naked but retains a mucilage coat and nests extremely shallowly within Pterocystidae. 28S rDNA has a group I intron. Concatenated Bayesian 18S/28S rRNA phylogeny shows centrohelids weakly as sisters to the naked non-centrohelid heliozoan Microheliella maris (Microhelida: Heliozoa). The centrohelid Marophrys marina possesses an elongation factor α-like (EFL) protein related to that of Polyplacocystis; Microheliella also has EFL. We also analysed Hsp90 and 18S rDNA sequences from 'Pinaciophora sp.' ATCC50355; they must be from a centrohelid, probably misidentified as Pinaciophora, the rDNA sequence branching deeply within Pterocystida. We reclassify two Polyplacocystis, Luffisphaera, Phaeodaria and Rotosphaerida.  相似文献   

19.
The dinoflagellate cyst Lunnomidinium scaniense gen. et sp. nov. is present in the lower part of a thin sequence of Rhaetian sedimentary rocks exposed in the Lunnom Coal and Clay Pit in NW Scania, southern Sweden. It occurs in diverse, Rhaetian palynomorph assemblages, dominated by spores and pollen, but with rare specimens of the dinoflagellate cysts Rhaetogonyaulax rhaetica (Sarjeant) Loeblich and Loeblich 1968, Shublikodinium sp. and Beaumontella? caminuspina (Wall) Below 1987. Lunnomidinium scaniense is characterized by an epicystal {tAtItP} archeopyle, a large number of paraplates arranged in seven or eight latitudinal series, and intratabular ornamentation in some but not all of the paraplate series. Thus, L. scaniense is assignable to the family Suessiaceae. Lunnomidinium scaniense can be subdivided into two different morphological varieties, based on the autophragm ornamentation and cyst size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号