首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive applications of persistent organochlorine pesticides like endosulfan on cotton have led to the contamination of soil and water environments at several sites in Pakistan. Microbial degradation offers an effective approach to remove such toxicants from the environment. This study reports the isolation of highly efficient endosulfan degrading bacterial strains from soil. A total of 29 bacterial strains were isolated through enrichment technique from 15 specific sites using endosulfan as sole sulfur source. The strains differed substantially in their potential to degrade endosulfan in vitro ranging from 40 to 93% of the spiked amount (100 mg l−1). During the initial 3 days of incubation, there was very little degradation but it got accelerated as the incubation period proceeded. Biodegradation of endosulfan by these bacteria also resulted in substantial decrease in pH of the broth from 8.2 to 3.7 within 14 days of incubation. The utilization of endosulfan was accompanied by increased optical densities (OD595) of the broth ranging from 0.511 to 0.890. High performance liquid chromatography analyses revealed that endosulfan diol and endosulfan ether were among the products of endosulfan metabolism by these bacterial strains while endosulfan sulfate, a persistent and toxic metabolite of endosulfan, was not detected in any case. The presence of endosulfan diol and endosulfan ether in the bacterial metabolites was further confirmed by GC-MS. Abiotic degradation contributed up to 21% of the spiked amount. The three bacterial strains, Pseudomonas spinosa, P. aeruginosa, and Burkholderia cepacia, were the most efficient degraders of both α- and β-endosulfan as they consumed more than 90% of the spiked amount (100 mg l−1) in the broth within 14 days of incubation. Maximum biodegradation by these three selected efficient bacterial strains was observed at an initial pH of 8.0 and at an incubation temperature of 30°C. The results of this study may imply that these bacterial strains could be employed for bioremediation of endosulfan polluted soil and water environments.  相似文献   

2.
Lević J  Petrović T 《Mycopathologia》1997,140(3):149-155
The formation of conidia in Phaeocytostroma ambiguum on different media and conditions was investigated in this study. Carnation leaf agar (CLA) and a 12 h photoperiod (24/18 °C) provided excellent conditions for the promotion of rapid formation of both alpha (α) and beta (β) conidia in a number of P. ambiguum isolates. The dimensions of α- and β-conidia amounted to 6.0–19.6 × 3.8–7.5 μm and 6.0–24.9 × 1.1–2.6 μm, respectively. They were produced on short or elongate, simple and branched conidiophores. β-conidia have not been described before in P. ambiguum. Intermediate conidia were rarely found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Cells of a -lactamase producingE. coli strain were immobilized with acrylamide and lyophilized. The gel particles containing the entrapped cells were used like an immobilized enzyme to study the inactivation of -lactam antibiotics. The substrate profile of the -lactamase was determined and the action of -lactamase inhibitors studied.  相似文献   

4.
Among 2,3-epoxypropyl α-d-glucopyranoside and 2,3-epoxypropyl α-maltooligosaccharides and the β-anomers, 2,3-epoxypropyl α-d-glucopyranoside (α-EPG) strongly inactivated the β-amylases [EC 3.2.1.2] of sweet potato, barley, and Bacillus, cereus, in addition to soybean β amylase [J. Biochem., 99, 1631 (1986)]. However, none of the compounds used inactivated any α-amylases [EC 3.2.1.1] of porcine pancreas, Aspergillus oryzae, or Bacillus amyloliquefaciens. Irreversible incorporation of 14C-labeled α-EPG into β-amylases was stoichiometric, i.e., one α-EPG per active site of the enzyme was bound, and the inactivations were almost complete. The results suggest that α-EPG is an affinity labeling reagent selective for β-amylase. Slow inactivations by the other compounds were also observed, depending on the difference of source of β amylase.  相似文献   

5.
A recording technique for measuring the sugar uptake by cell suspensions using a polarimeter is described. The method makes it possible to calculate the uptake rates of the α-and β-anomers. The constitutive monosaccharide transport system ofSaccharomyces cerevisiae andSaccharomyces fragilis exhibits a higher affinity for the α-anomers ofd-glucose,d-manose andd-xylose than for the corresponding β-anomers, this resulting in a preferential uptake of the α-anomers from a mixture. The α-anomer ofd-xylose is preferred both during influx and efflux. The membrane transport ofd-xylose inSaccharomyces cerevisiae is not associated with a change of the anomer configuration. The facilitated diffusion system appears to possess a regulatory role for the utilization ofd-glucose andd-mannose in both yeast species investigated.  相似文献   

6.
Human adult haemoglobin consists of two unlike pairs of polypeptide chains, and can be described as α2β2. Amino-acid substitutions in either of the two types of chain result in α- and β-chain variants. In thalassaemia, which causes a lowered production of haemoglobin, the α or the β chain can be affected, the result being α- or β-thalassaemia. There is a quantitative difference in the proportion of α- and β-chain variants to normal haemoglobin in the respective heterozygotes, and there is also a difference in the pattern of inheritance of α- and β-thalassaemia: these could possibly be explained by assuming that man has one gene for the β- and two for the α-chain.  相似文献   

7.
8.
The uptake of methyl α-d-glucopyranoside (α-MG) by Escherichia coli K12 was decreased by the addition of substrates which stimulated the rate of oxygen consumption by the cells. The inhibition, which occurred only at non-saturating concentrations of α-MG, was not the result of a stimulation of the rate of exit of intracellular α-MG, and was abolished by the presence of carbonyl cyanide m-chlorophenylhydrazone or sodium azide. Since those drugs inhibit energy conservation at the respiratory chain and did not alter significantly the rate of oxygen consumption under the conditions for the assay of α-MG uptake, it appears that the inhibition of the transport system by respirable substrates is mediated by some form of energy derived from respiration.  相似文献   

9.
We have used cloned adult X. laevis α- and β-globin cDNAs to analyze globin genes in X. laevis DNA. We detected α1- and β1-globin genes which contain intervening sequences and code for the major adult globins, plus additional diverged α2- and β2-globin genes of unknown coding potential. Unlike the case in mammals, the X. laevis α1- and β1-globin genes are closely linked and occur in the sequence 5′-α1-9 kb-β1-3′. The α2- and β2-globin genes are also linked, and analysis of globin genes in X. tropicalis suggests that this duplication of an α-β-globin gene pair in X. laevis is the result of chromosome duplication by tetraploidization. The close linkage of α- and β-globin genes in Xenopus provides evidence that vertebrate α- and β-globin genes evolved by tandem duplication of a single primordial globin gene.  相似文献   

10.
To economically produce recombinant human α-galactosidase A (GLA) with a cell culture system that does not require bovine serum, we chose methylotrophic yeast cells with the OCH1 gene, which encodes α-1,6-mannosyltransferase, deleted and over-expressing the Mnn4p (MNN4) gene, which encodes a positive regulator of mannosylphosphate transferase, as a host cell line. The enzyme (yr-hGLA) produced with the gene-manipulated yeast cells has almost the same enzymological parameters as those of the recombinant human GLA produced with cultured human fibroblasts (agalsidase alfa), which is currently used for enzyme replacement therapy for Fabry disease. However, the basic structures of their sugar chains are quite different. yr-hGLA has a high content of phosphorylated N-glycans and is well incorporated into the kidneys, the main target organ in Fabry disease, where it cleaves the accumulated glycosphingolipids. A glycoprotein production system involving this gene-manipulated yeast cell line will be useful for the development of a new enzyme replacement therapy for Fabry disease.  相似文献   

11.
Anomeric forms of glucose and maltose produced from phenyl, p-nitrophenyl, p-tert-butylphenyl, p-ethylphenyl and p-chlorophenyl α-maltosides and maltopentaose by α- and β-amylases were determined quantitatively by a gas-liquid chromatographic method. All of the three kinds of α-amylases tested, B. subtilis saccharifying α-amylase, Taka-amylase A, and porcine pancreas α-amylase, were found to produce only α-maltose from the maltosides. Sweet potato and barley β-amylases produced β-maltose from maltopentaose.

Saccharifying α-amylase from B. subtilis also released α-maltose from all the maltosides mentioned above, contrary to the report by Shibaoka et al. that the enzyme released β-maltose from maltosides other than phenyl α-maltoside: FEBS Lett., 16, 33 (1971); J. Biochem., 77, 1215 (1975). It appears unlikely that the α-amylase releases β-maltose, depending on the kind of substrate.  相似文献   

12.
Several esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of S-(3-aminopropyl)-l-cysteine and the methyl ester of S-(4-aminobutyl)-N-toluene-p-sulphonyl-l-cysteine were synthesized. The kinetics of hydrolysis of these and esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of l-arginine, l-lysine, S-(2-aminoethyl)-l-cysteine and esters of γ-guanidino-l-α-toluene-p-sulphonamidobutyric acid and α-N-toluene-p-sulphonyl-l-homoarginine by α- and β-trypsin were compared. On the basis of values of the specificity constants (kcat./Km), the two enzymes display similar catalytic efficiency towards some substrates. In other cases α-trypsin is less efficient than β-trypsin. It is possible that α-trypsin possesses greater molecular flexibility than β-trypsin.  相似文献   

13.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   

14.
The uptake of35S-labelled inorganic sulphate by a brewer’s yeast has been examined. Optimum uptake by cell suspensions required the presence in the medium of glucose, ammonium ions and citrate. The omission of phosphate produced little or no effect. Ammonium ions could be replaced almost completely byL-glutamine but not by a number of amino acids. After one hour approximately 60% of the sulphate-sulphur accumulated appeared in protein. This was comparable to the rate of entry of methionine-sulphur into yeast protein. Sulphate uptake was inhibited by azide, 2,4-dinitrophenol, iodoacetate and mercuric ions. Arsenate was inhibitory at high concentrations but stimulated uptake at low concentrations. Selenate inhibited uptake competitively and appeared to have an affinity for the sites of uptake comparable with that of sulphate. Uptake was also partly suppressed byL-methionine,L-ethionine,L-cysteine andDL-homocysteine.  相似文献   

15.
The gdh and gdhr genes, encoding B12-dependent glycerol dehydratase (GDH) and glycerol dehydratase reactivase (GDHR), respectively, in Klebsiella pneumoniae, were cloned and expressed in E. coli. Part of the β-subunit was lost during GDH purification when co-expressing α, β and γ subunit. This was overcome by fusing the β-subunit to α- or γ-subunit with/without the insertion of a linker peptide between the fusion moieties. The kinetic properties of the fusion enzymes were characterized and compared with wild type enzyme. The results demonstrated that the fusion protein GDHALB/C, constructed by linking the N-terminal of β-subunit to the C-terminal of α subunit through a (Gly4Ser)4 linker peptide, had the greatest catalytic activity. Similar to the wild-type enzyme, GDHALB/C underwent mechanism-based inactivation by glycerol during catalysis and could be reactivated by GDHR. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
The regulatory capacity of noradrenaline and its end metabolite 4-hydroxy-3-metoxyphenylglycol (HMPG) on the complete phagocytic process of macrophages were investigated. Either noradrenaline or HMPG did not modify adherence. However, 10–12 M of noradrenaline stimulated the chemotaxis of macrophages, mainly mediated by -adrenergic receptors. In contrast, 10–12 M of HMPG induced an opposed effect on this stage of the phagocytic process. To stimulate phagocytosis, it is necessary to employ a higher concentration (10–5 M) of noradrenaline and this effect was blocked with either 10–6 M propranolol or 10–6 M phentolamine, and maintained by HMPG. Noradrenaline and HMPG did not modify the microbicide capacity of macrophages (measured by O2 production after phagocytosis). In conclusion, noradrenaline modulates the phagocytic process of macrophages, and this modulation is completed by HMPG, maintaining the phagocytic functions at physiologically optimal levels. Modulation of chemotaxis is mainly mediated by a-receptors and phagocytosis needs both - and -receptor-stimulation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号