首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the direct effect of prolactin on adrenal androgen secretion, the daily secretions of dehydroepiandrosterone sulfate (DHEA-S), dehydroepiandrosterone (DHEA), androstenedione and cortisol were determined in monolayer culture of bovine adrenal cells in the presence or absence of adrenocorticotropic hormone (ACTH) and/or prolactin. In the absence of ACTH ovine prolactin alone had no effect on steroid secretion during seven-day culture. Ovine prolactin, when administered in combination with ACTH, significantly potentiated the stimulatory effect of ACTH on DHEA-S and DHEA but not androstenedione secretion on the seventh day in culture. On the first day in culture prolactin showed no synergistic effect with ACTH on DHEA and DHEA-S secretion, although ACTH significantly increased DHEA and cortisol secretion. DHEA-S secretion increased as a function of prolactin concentration in the presence of ACTH. These results indicated that long-term treatment by ovine prolactin with ACTH caused the increase in adrenal androgen secretion from bovine adrenal cells. The site of action of prolactin was suggested to be the partial inhibition of adrenal 3 beta-hydroxysteroid dehydrogenase by the result of increases in DHEA-S and DHEA but not androstenedione secretion.  相似文献   

2.
C R Parker 《Steroids》1999,64(9):640-647
Dehydroepiandrosterone (DHEA) is produced in prodigious quantities by the human adrenal, principally as the 3-sulfoconjugate DHEA sulfate (DS) during intrauterine life. The fetal zone and neocortex cells of the fetal adrenal express large amounts of DHEA sulfotransferase and minimal amounts, at least until very near the end of gestation, of 3beta-hydroxysteroid dehydrogenase. This pattern of enzyme expression favors substantial secretion of DHEA/DS with minimal cortisol produced; the DHEA/DS serves as the major precursor for placental estrogen formation in human pregnancy. Aside from adrenocorticotropin, other physiologic regulators of growth and steroidogenesis in the fetal adrenal have been postulated to exist, but have yet to be identified. Whereas intrauterine stressors may activate adrenal cortisol secretion, the fetal adrenal responds to many pregnancy conditions by suppressing DHEA/DS formation. After birth, the human adrenal undergoes reorganization whereby the large, inner fetal zone regresses, and DHEA/DS production is diminished. Just prior to gonadal maturation, the human adrenal undergoes morphologic and functional changes (adrenarche) that give rise to a prominent zona reticularis that is characterized by the presence of DHEA sulfotransferase, the absence of 3beta-hydroxysteroid dehydrogenase, and an enhancement of DHEA/DS production. The adrenal of the adult responds to stress in many instances like that of the fetus: increased cortisol secretion and diminished DHEA/DS secretion. The mechanisms for this divergence in the adrenocortical pathway is unknown. With aging, there is suppression of DHEA/DS secretion, possibly as the consequence of an involution of the zona reticularis, but corticosteroid production continues unabated.  相似文献   

3.
We previously reported that an oxidized derivative of linoleic acid stimulated steroidogenesis in rat adrenal cells. This derivative was also detected in human plasma, and was positively correlated with visceral adiposity and plasma DHEA-S. The present study sought to characterize the effects of this derivative, 12,13-epoxy-9-keto-(10- trans)-octadecenoic acid (EKODE), on steroid production by normal human adrenocortical cells obtained during clinically-indicated adrenalectomy. Cell suspensions were incubated in the presence of varying concentrations of EKODE and ACTH. EKODE (16 microM) significantly increased DHEA production by 28% under basal conditions and by 25% in the presence of a low concentration of ACTH (0.2 ng/ml). The effect on DHEA was absent at a higher ACTH concentration (2.0 ng/ml). EKODE decreased cortisol production by 16% (low ACTH) and 25% (high ACTH), but was without effect on cortisol under basal conditions. The results suggest that EKODE affects adrenal DHEA production in the human, possibly by modulating steroidogenic enzyme activity. We postulate that excess visceral fat delivers fatty acids to the liver, where oxidized derivatives are formed that modulate adrenal steroidogenesis. This may be an important phenomenon in the genesis of changes in adrenal function associated with syndromes of obesity, especially those that include androgen excess.  相似文献   

4.
The roles of human low density lipoprotein (LDL)- cholesterol and high density lipoprotein (HDL)- cholesterol on adrenal steroidogenesis were investigated using cultured human adult and fetal adrenocortical cells and the findings were then compared to those obtained with bovine adrenocortical cells. The secretion of cortisol in both human and bovine adrenocortical cells was dose-dependently increased by the administration of LDL- or HDL-cholesterol in the presence of adrenocorticotropin (ACTH). LDL-cholesterol was utilized to a greater extent than HDL-cholesterol in both human and bovine adrenal steroidogenesis in the presence of ACTH. Exogenous lipoprotein-derived cholesterol was less utilized in human adrenal steroidogenesis than in bovine adrenal steroidogenesis, compared to the endogenous cholesterol. An increase in the secretion of cortisol and dehydroepi androsterone sulfate (DHEA-S) continued for the 5-day culture period, in the presence of lipoprotein cholesterol and ACTH in both human adult and fetal adrenocortical cells. The secretion of aldosterone increased on the first day of the culture period, then gradually decreased for the 5-day culture period in human adult adrenocortical cells, but not in human fetal adrenocortical cells in the presence of lipoprotein cholesterol and ACTH. These findings demonstrate that exogenous cholesterol utilized in the biosynthesis of steroids is mainly from LDL-cholesterol in both human adult and fetal adrenals and bovine adrenal and the proportion of cholesterol synthesized de novo is significantly larger in the human adult adrenal than in the bovine adrenal.  相似文献   

5.
We investigated the mechanism of dissociation of cortisol and dehydroepiandrosterone sulfate (DHEA-S) secretion by the adrenal glands after the removal of an adrenal gland containing an adrenocortical adenoma in a patient with Cushing's syndrome. After removal of the adrenocortical adenoma, the serum cortisol rapidly decreased from 24.6 +/- 6.4 micrograms/dl (mean +/- SD, n = 6) to 0.7 +/- 0.5 micrograms/dl. Serum DHEA-S levels were 15 +/- 14 micrograms/dl and 6 +/- 9 micrograms/dl before and after surgery, respectively, and significantly lower than the control values. Serum cortisol levels reverted to normal levels 1.5 to 3 years after the surgery. On the other hand, DHEA-S levels reverted to normal 5 to 7 years after the serum cortisol levels had normalized. Monolayer cultures of normal human adrenal cells obtained at adrenalectomy in patients with advanced breast cancer and atrophic adrenal cells adjacent to the adrenocortical adenoma in patients with Cushing's syndrome were used to study the mechanism of the dissociation of cortisol and DHEA-S secretion. ACTH caused significant increases in the productions of pregnenolone (P5), progesterone (P4), 17-hydroxypregnenolone (17-OH-P5), 17-hydroxyprogesterone (17-OH-P4), DHEA, DHEA-S, androstenedione (delta 4-A), and cortisol. The amounts of 17-OH-P5 and 17-OH-P4 produced by ACTH in atrophic adrenal cells were significantly greater than those in normal adrenal cells. The amounts of DHEA, DHEA-S and delta 4-A produced by ACTH in atrophic adrenal cells were significantly smaller than those of normal adrenal cells. The conversion rate of 17-OH-[3H]P5 to 17-OH-[3H]P4 and 11-deoxy-[3H] cortisol was higher in atrophic adrenal cells than in normal adrenal cells, but the conversion rate to [3H]DHEA, [3H]DHEA-S and [3H]delta 4-A was significantly lower in atrophic adrenal cells than in normal adrenal cells. These results suggest that the dissociation of cortisol from DHEA-S after the removal of adrenocortical adenoma is a probably due to diminished C17,20-lyase activity in the remaining atrophic adrenal gland.  相似文献   

6.
7.
The synthesis of adrenal steroids requires molecular oxygen. Because arterial hypoxemia is a common clinical condition, the purpose of the present study was to examine steroidogenesis in vitro under physiological changes in O(2) tension (Po(2)) in cells from human adrenal glands with aldosterone-secreting adenomas (ASA; n=3) or with bilateral adrenal hyperplasia causing Cushing's syndrome (n=4). A decrease in Po(2) from 150 mmHg (mild hyperoxia) to 80 mmHg had minimal effect on steroid production. A reduction to 40 mmHg (still well within the physiological range) significantly inhibited cAMP- and ACTH-stimulated aldosterone, cortisol, and dehydroepiandrosterone (DHEA) production from ASA. Furthermore, cortisol and DHEA production in cells from histologically normal tissue, adjacent to ASA and from bilateral adrenal hyperplasias, was also inhibited under a Po(2) of 40 mmHg. We conclude that physiological decreases in Po(2) to levels typical for adrenal venous Po(2) under mild hypoxia inhibit steroidogenesis. These studies may have implications for oxygen therapy in critically ill patients with functional adrenal insufficiency, as well as for therapeutic options in patients with adrenal neoplasms.  相似文献   

8.
The effects of synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) on steroidogenesis in bovine adrenocortical cells in primary monolayer culture were investigated. alpha-hANP did not inhibit basal aldosterone secretion. alpha-hANP induced a significant dose-dependent inhibition of basal levels of cortisol and dehydroepiandrosterone (DHEA) secretion and also of ACTH (10(-8) M)-stimulated increases in aldosterone, cortisol and DHEA secretion. Visualization of [125I]alpha-hANP binding sites in bovine adrenal gland by an in vitro autoradiographic technique demonstrated that these sites were highly localized in the adrenal cortex, especially the zona glomerulosa. These results suggest that the adrenal cortex may be a target organ for direct receptor-mediated actions of alpha-hANP.  相似文献   

9.
Humans and primates are unique in having adrenals that secrete large amounts of DHEA and DHEA-S in the circulation. These steroids act as precursors of active androgens and estrogen's in a long series of peripheral target intracrine tissues. The marked decline of serum DHEA and DHEA-S concentrations with age in men and women has been incriminated in the development of various pathologies. This study provides detailed information on the effect of a single 50mg oral dose of DHEA on circulating estrogen's as well as androgens and their metabolites over 10h in adult ovariectomised (OVX) Cynomolgus monkeys. Serum DHEA, DHEA-S, testosterone (Testo) and androstenedione (4-dione) concentrations increased rapidly with a maximal value at approximately 1h after DHEA administration followed by a 60-80% decrease during the next 2-6h. An important sulfatation of DHEA occurs through first hepatic pass, thus, leading to a marked increase in serum DHEA-S. Serum androst-5-ene-3beta,17beta-diol and androsterone glucuronide (ADT-G) levels remained elevated on a plateau for 6h. Androstan-3alpha,17beta-diol-glucuronide, estradiol and estrone levels remained unchanged. The present data indicate the predominant transformation of the adrenal precursor DHEA into active androgens in peripheral tissues and support the importance of measurement of circulating glucuronide derivatives as index of peripheral or intracrine androgen formation and action.  相似文献   

10.
It is not clear if an increase in intra-adrenal cortisol is required to mediate the actions of adrenocorticotropic hormone (ACTH) on adrenal growth and steroidogenesis during the prepartum stimulation of the fetal pituitary-adrenal axis. We infused metyrapone, a competitive inhibitor of cortisol biosynthesis, into fetal sheep between 125 and 140 days of gestation (term = 147 +/- 3 days) and measured fetal plasma cortisol, 11-desoxycortisol, and ACTH; pituitary pro-opiomelanocortin mRNA and adrenal expression of ACTH receptor (melanocortin type 2 receptor), steroidogenic acute regulatory protein (StAR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), cytochrome P450 17-hydroxylase (CYP17), 3beta-hydroxysteroid dehydrogenase, and cytochrome P450 21-hydroxylase mRNA; and StAR protein in the fetal adrenal gland. Plasma ACTH and 11-desoxycortisol concentrations were higher (P < 0.05), whereas plasma cortisol concentrations were not significantly different in metyrapone- compared with vehicle-infused fetuses. The ratio of plasma cortisol to ACTH concentrations was higher (P < 0.0001) between 136 and 140 days than between 120 and 135 days of gestation in both metyrapone- and vehicle-infused fetuses. The combined adrenal weight and adrenocortical thickness were greater (P < 0.001), and cell density was lower (P < 0.01), in the zona fasciculata of adrenals from the metyrapone-infused group. Adrenal StAR mRNA expression was lower (P < 0.05), whereas the levels of mature StAR protein (30 kDa) were higher (P < 0.05), in the metyrapone-infused fetuses. In addition, adrenal mRNA expression of 11betaHSD2, CYP11A1, and CYP17 were higher (P < 0.05) in the metyrapone-infused fetuses. Thus, metyrapone administration may represent a unique model that allows the investigation of dissociation of the relative actions of ACTH and cortisol on fetal adrenal steroidogenesis and growth during late gestation.  相似文献   

11.
12.
The aim of this study was to evaluate serum and saliva adrenocortical hormones and their relationships at rest and during submaximal exercise and recovery in 9 obese diabetic middle-aged men (BMI: 35.2 ± 1.6 kg/m (2)). Blood and saliva samples were taken at rest, every 10 min of a 30-min cycling exercise at 70% of maximal heart rate, and after 10 min of recovery in order to analyze cortisol, dehydroepiandrosterone sulfate (DHEA-S) and dehydroepiandrosterone (DHEA). Serum and saliva cortisol increased significantly during recovery (p<0.05), but no significant difference was observed between the rest, exercise, and recovery DHEA-S and DHEA concentrations. A strong correlation was found at rest between both serum and saliva cortisol (r=0.72, p<0.001) and DHEA-S and DHEA (r=0.93, p<0.001). Serum DHEA-S and saliva DHEA remained strongly correlated during and after the submaximal exercise (r=0.81, p<0.001), whereas a weaker but still significant relationship was observed between serum and saliva cortisol during and after the exercise (r=0.52, p<0.001). In conclusion, these results suggest that saliva adrenocortical hormones, and especially saliva DHEA, may offer a practical surrogate for serum concentrations during both rest and exercise in obese diabetic men.  相似文献   

13.
Adrenopause     
Dehydroepiandrosterone(DHEA) and DHEA-S are steroids that are abundantly produced by the adrenal gland. Plasma concentrations of DHEA and DHEA-S increase during adrenarche but decrease steadily after puberty. Although DHEA and DHEA-S have few intrinsic androgenic actions, they have recently attracted widespread attention due to their beneficial anti-aging effects. We clarified the beneficial effects of DHEA as an anti-aging steroid with regard to its stimulation of the immune system and its anti-diabetes, anti-atherosclerosis, anti-dementia (neurosteroid), anti-obesity and anti-osteoporosis effects. There are two possible biochemical and molecular mechanisms: direct action via the DHEA receptor on the target gene; and indirect action. We identified a high affinity of DHEA binding in human T-lymphocytes by searching for the target genes that are induced in activated T-lymphocytes in the presence of DHEA, determined the gene sequence and named DHEA-induced dual p38-specific phosphatase (DDSP). DDSP transgenic mice have been created to identify the anti-aging effects of DDSP. The conversion of DHEA to estrone by cytochrome P450 aromatase in primary cultured human osteoblasts was clarified. We are currently undertaking an open trial of DHEA replacement therapy.  相似文献   

14.
Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.  相似文献   

15.
Very little has been known of the biochemical function of a human adrenocortical carcinoma cell line, SW-13. In this study, the production of several adrenal steroids and 3', 5'-cyclic adenosine monophosphate (cAMP) were investigated in this cell line. The cells were incubated in L-15 medium containing 0.1% bovine serum albumin with several reagents in an atmosphere of 5% CO2 and 95% air for 2 hours at 37 degrees C. Aldosterone (Ald), corticosterone (B), cortisol (F), dehydroepiandrosterone sulfate (DHEA-S) and cAMP were simultaneously assayed by specific radioimmunoassays in the medium and cells. Significant increases in cAMP production were observed by cholera toxin (10 ng/ml) and forskolin (10 nM), both direct stimulators of adenylate cyclase, in the cAMP concentration without an increase in the steroids. The DHEA-S concentration in the medium was significantly increased by angiotensin-II (10(-7)M), noradrenalin (3 X 10(-5) M), adrenalin (3 X 10(-5) M) or alpha-melanocyte-stimulating hormone (alpha-MSH, 10(-7) M), none of which was associated with cAMP production. Neither adrenocorticotropin (10(-10) M) nor human chorionic gonadotropin (500 mIU/ml) stimulated the release of the steroids or cAMP production. A calcium ionophore, A23187 (10(-7) M), and 12-O-tetradecanoylphorbol-13-acetate (10(-8) M), a direct stimulator of protein kinase C, stimulated the release of DHEA-S, but not those of Ald, B and F. The results suggest that SW-13 retains functioning adenylate cyclase which, however, is not linked with steroidogenesis and that DHEA-S is produced probably by the mechanisms which involve protein kinase C system or calcium ion. This report provides the first demonstration of cAMP and DHEA-S production in SW-13 and suggests that this cell line is potentially useful for investigating the mechanisms of steroidogenesis in the human adrenal cortex.  相似文献   

16.
Human placenta produces a large variety of bioactive substances with endocrine and neural competence: pituitary and gonadal hormones, hypothalamic-like releasing or inhibiting hormones, growth factors, cytokines and neuropeptides. The most recent findings indicate that locally produced hormones regulate the secretion of other placental hormones supporting a paracrine/autocrine regulation. In placental endocrinology, a particular relevance is played by steroid hormones. In fact, a specific gonadotropin-releasing hormone (GnRH)-human chorionic gonadotropin (hCG) regulation of placental steroidogenesis has been proposed as a placental internal regulatory system acting on steroids production from human placenta. In addition, activin and inhibin have been proposed as further regulatory substances of the synthesis and secretion of steroids; the addition of activin A to placental culture augments GnRH, hCG and progesterone, and this effect can be significantly reduced by the addition of inhibins. Finally, a steroid-steroid interaction is suggested by the evidence that placental estrogen has a positive role in the regulation of progesterone biosynthesis. Other steroid-protein interactions have been observed in human placenta. In fact, recent data indicate that progesterone inhibits placental corticotropin-releasing factor (CRF) and estrogens act on placental conversion of cortisol to cortisone, activating cortisol secretion by the fetal adrenal and enhancing fetal adrenal function with advancing gestation.  相似文献   

17.
Serum concentrations of dehydroepiandrosterone (DHEA), androstenedione, testosterone, 5 alpha-dihydrotestosterone and cortisol were measured in 10 infants (age 5-22 months) before, during and after 6-weeks of ACTH therapy for infantile spasms. During therapy, their mean DHEA concentrations increased 2.3-fold, androstenedione 12.3-fold, testosterone 2.7-fold, 5 alpha-dihydrotesterone 2.5-fold and cortisol 2.9-fold compared to pre-therapy values. Serum dehydroepiandrosterone sulphate (DHEA-S) concentrations were also increased during ACTH therapy above the normal prepubertal range. Three days after the cessation of ACTH treatment, all androgens had returned to the pre-therapy level. We conclude: At least in pharmacologic doses ACTH alone stimulates adrenal androgen secretion in infants, excluding the necessity of a separate adrenal androgen stimulating hormone.  相似文献   

18.
Dehydroepiandrosterone (DHEA) and cortisol are the most abundant hormones of the human fetal and adult adrenals released as end products of a tightly coordinated endocrine response to stress. Together, they mediate short- and long-term stress responses and enable physiological and behavioral adjustments necessary for maintaining homeostasis. Detrimental effects of chronic or repeated elevations in cortisol on behavioral and emotional health are well documented. Evidence for actions of DHEA that offset or oppose those of cortisol has stimulated interest in examining their levels as a ratio, as an alternate index of adrenocortical activity and the net effects of cortisol. Such research necessitates a thorough understanding of the co-actions of these hormones on physiological functioning and in association with developmental outcomes. This review addresses the state of the science in understanding the role of DHEA, cortisol, and their ratio in typical development and developmental psychopathology. A rationale for studying DHEA and cortisol in concert is supported by physiological data on the coordinated synthesis and release of these hormones in the adrenal and by their opposing physiological actions. We then present evidence that researching cortisol and DHEA necessitates a developmental perspective. Age-related changes in DHEA and cortisol are described from the perinatal period through adolescence, along with observed associations of these hormones with developmental psychopathology. Along the way, we identify several major knowledge gaps in the role of DHEA in modulating cortisol in typical development and developmental psychopathology with implications for future research.  相似文献   

19.
Adrenarche is the direct consequence of the organogenesis of the zona reticularis (ZR). Proliferation of cortical cells could take place in the outermost layers of the adrenal cortex. Cells could then migrate to differentiate the zona glomerulosa (ZG) and zona fasciculata (ZF) during fetal life, and the ZR during postnatal life. After adrenarche, there are detectable increases in circulating DHEA and DHEA-S. Adrenarche could result from an increase in 17,20-lyase activity of P450c17 secondary to high levels of cytochrome b(5) expression, and from a decrease in 3betaHSD2 expression along with an increase in the expression of SULT2A1 in the ZR. The GH-IGF system and insulin, among other factors, might also modulate adrenal androgen production. Furthermore, high concentrations of estradiol enhance basal and ACTH-stimulated DHEA-S production, while aromatase expression was observed in the human adrenal medulla but not in the ZR, suggesting that estrogens produced in the adrenal medulla might be involved in the regulation of androgen production in the ZR. Premature adrenarche might be associated with ovarian hyperandrogenism and polycystic ovarian syndrome in females, as well as with insulin resistance in both sexes. However, many questions remain, transforming adrenal androgens into markers of diseases important for human health.  相似文献   

20.
Explants prepared from the neocortex and the fetal zone of the human fetal adrenal (gestational age 13 to 18weeks) were maintained under conditions of organ culture for 7 to 9 days during which time they were exposed to hACTH and various related peptides. Corticotrophic activity was monitored by the daily release of dehydroepiandrosterone sulfate (3beta-hydroxy-5-androsten-17-one, 3-sulfate; DHA-S) and cortisol as quantified by radioimmunoassay, hACTH (2.2 x 10(-9) - 2.2 x 10(-8)M) was the most active in sustaining steroidogenesis by both neocortical and fetocortical cells. alpha-MSH possessed similar properties but not at concentrations lower than 10(-6)M, whereas CLIP (4.4 x 10(-9) - 1.1 x 10(-7)M), the 18-39 C-terminal moiety of ACTH, was devoid of activity. Corticotrophic activity with respect to fetocortical explants appeared to be that of maintenance of function best illustrated by dehydroepiandrosterone sulfate biosynthesis, while enhancement of steroidogenesis was observed in the neocortex as manifested by cortisol release. Although not eliminating the possible existence of a specific fetal corticotrophin related to ACTH1-39, the data indicate that hACTH is capable of regulating steroidogenesis in the fetal zone which is primarily geared to the formation of dehydroepiandrosterone sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号