首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alpha 2-macroglobulin can be reversibly dissociated by Cd2+ at low ionic strength in half-molecules which retain their ability to bind tightly plasmin and chymotrypsin. The steady state kinetic parameters of these proteinases towards chromogenic substrates when bound to half-molecules are not greatly different from those determined for these enzymes linked to whole alpha 2M molecules. Cd2+ can also induce the dissociation of plasmin- and chymotrypsin - alpha 2M complexes into proteinase-alpha 2M half-molecule conjugates. These results, taken with the fact that monomeric units of alpha 2M cannot bind these proteinases, strongly suggest that each active site of alpha 2M consists in a specific arrangement of two monomeric units linked by disulfide bridges.  相似文献   

2.
Human alpha 2-macroglobulin (alpha 2M) undergoes a conformational change after reaction with proteases. In this report, it is shown that although two trypsin molecules may bind simultaneously to each alpha 2M, only one trypsin is necessary to induce alpha 2M conformational change. Ternary complexes of alpha 2M and either two radioiodinated trypsins or two nonradioiodinated trypsins were purified by gel filtration chromatography. The nonradioactive complex did not bind 125I-trypsin, even after incubation for 24 h with the free protease present at a large molar excess. Under comparable conditions, a large molar excess of nonradioactive trypsin did not cause significant dissociation of the complex prepared with radioiodinated protease. Equations are presented that distinguish between two separate models of protease binding and demonstrate that binary alpha 2M-trypsin complex retains no significant trypsin binding activity despite the presence of a vacant protease binding site. Purified alpha 2M-plasmin complex, with 1.10 mol of plasmin/mol of inhibitor, also retained no trypsin binding activity as assessed with radioiodinated protein binding experiments. These studies suggest that reactions of alpha 2M with proteases are accurately described by the "trap hypothesis" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724) independent of protease size or binding stoichiometry.  相似文献   

3.
Human alpha 2-antiplasmin readily forms 1:1 complexes with either trypsin or chymotrypsin at independent but overlapping reactive sites. In the absence of alpha 2-macroglobulin, complex dissociation and enzyme release can be demonstrated without regeneration of inhibitory activity. However, in the presence of this inhibitor the dissociation of alpha 2-antiplasmin-chymotrypsin complexes or alpha 2-antiplasmin-trypsin complexs yields functionally active inhibitors which can now inactivate trypsin and chymotrypsin, respectively. These results clearly indicate that Serpin-proteinase complexes can dissociate to give both active inhibitor and enzyme. If the enzyme is trapped by alpha 2-macroglobulin, in vivo, it is possible that the inhibitor may be recycled for further use.  相似文献   

4.
Native tetrameric alpha 2-macroglobulin molecules (alpha 2M) can be converted into a population of dimers by incubation with various divalent cations such as Zn, Cd, Mg, Cu, Ni, Co. This dissociation is completed within 30 min at 37 degrees C. These dimers have a characteristic shape and a size of about 16 X 8 nm, and appear to be the half of the native alpha 2M molecule which has a clear tetrameric structure as seen in the electron microscope. At room temperature or below, dimers obtained with 5 to 100 mM Zn++ can reassociate in long linear polymers which display a regular chain-like arrangement and a helical periodicity. The structural characteristics of this polymer are described. The trypsin inhibitory capacity of Zn++-treated alpha 2M has been studied in an attempt to correlate its Zn++-induced conformational changes with its functional modifications.  相似文献   

5.
S L Gonias  S V Pizzo 《Biochemistry》1983,22(21):4933-4940
Human alpha 2-macroglobulin (alpha 2M) half-molecules were prepared by limited reduction and alkylation of the native protein. Reaction with plasmin resulted in nearly quantitative cleavage of the half-molecule Mr approximately 180000 subunits into Mr approximately 90000 fragments. Subunit cleavage was significantly less complete when plasmin was reacted with alpha 2M whole molecules. The plasmin and trypsin binding capacities of the two forms of alpha 2M were compared by using radioiodinated proteases. alpha 2M half-molecules bound an equivalent number of moles of plasmin or trypsin. Native unreduced alpha 2M bound only half as much plasmin as trypsin. These data are consistent with the hypothesis that the two protease binding sites are adjacent in native alpha 2M. alpha 2M half-molecule-plasmin complexes reassociated less readily than half-molecule-trypsin complexes, supporting this interpretation. The frequency of covalent bond formation between plasmin and alpha 2M was considerably higher than that previously observed with other proteases. Approximately 80-90% of the plasmin that reacted with alpha 2M whole molecules or half-molecules became covalently bound. The reactivities of purified alpha 2M-plasmin complexes were compared with small and large substrates. Equivalent kcat/Km values were determined at 22 degrees C for the hydrolysis of H-D-Val-Leu-Lys-p-nitroanilide dihydrochloride by whole molecule-plasmin complex and half-molecule-plasmin complex (40 mM-1 s-1 and 39 mM-1 s-1, respectively, compared with 66 mM-1 s-1 determined for free plasmin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Assembly of proteolytically cleaved tubulin   总被引:5,自引:0,他引:5  
Conditions have been found for limited proteolysis of purified tubulin, in which 70-90% of the molecules are cleaved at one or two sites. Thermolysin and chymotrypsin cleave the alpha and beta subunits, respectively, at single sites. Trypsin cleaves the alpha subunit at two sites. The chymotrypsin site and one of the trypsin sites are apparently inaccessible on assembled microtubules. The different samples of proteolyzed tubulin were all fully competent to assemble in a buffer containing 1 M sodium glutamate. In another buffer (50 mM morpholinoethanesulfonic acid, 3.4 M glycerol) tubulin digested by thermolysin assembled as well as native tubulin, but samples digested by chymotrypsin or trypsin would not assemble even at high protein concentrations.  相似文献   

7.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A form of human alpha 2-macroglobulin (alpha 2M) has been prepared that has properties intermediate to those of native alpha 2-macroglobulin and 2:1 protease-alpha 2 M ternary complex by using Sepharose-linked chymotrypsin. The intermediate form has mobility on native polyacrylamide gels between the fast and slow forms of alpha 2M and migrates as a diffuse band. Two bait regions and two thiol esters per alpha 2M tetramer are cleaved, although no chymotrypsin is detectable in the modified alpha 2-macroglobulin species. The remaining bait regions and thiol esters can be cleaved by further reaction with other proteases. Intermediate-form alpha 2M can trap 1.18 mol of chymotrypsin, 0.85 mol of trypsin, and 0.65 mol of thrombin. Although both thrombin and methylamine react with intermediate-form alpha 2M at rates not distinguishable within experimental error from those of their reactions with native alpha 2M, chymotrypsin-Sepharose reacts much more slowly with the intermediate form than with native alpha 2 M, indicating a nonequivalence of the two reactive sites on alpha 2M. This nonequivalence may be present initially or be induced by reaction at the first site. Comparison of ESR results obtained from spin-labeling methylamine-treated or protease-reacted alpha 2M with those from spin-labeling of the free SH groups in intermediate-form alpha 2M shows that trapped protease influences the mobility of the attached nitroxide either through direct contact or by producing a different conformation from that present in methylamine-treated or intermediate-form alpha 2M.  相似文献   

9.
Some properties of protein inhibitor for trypsin (TI) from Act. janthinus 118 were studied. It was shown that TI has an antitrypsin activity within a wide pH range with a maximum at about 9,5. At 4 degrees and 20 degrees C TI is stable for 24 hours within the pH range of 6,0--11,0. At 100 degrees C TI is more stable in the slightly acid region of pH than at neutral or alkaline conditions. Trypsin and chymotrypsin inactivate the inhibitor for 8 hours. TI inhibits trypsin, fibrinolysin, subtilisin, pronase and terrilytin, but have no effect on chymotrypsin, thrombin, papain and pepsin. The dissociation constants for the trypsin-inhibitor complex were found to be 1,7.10-8 M, 4,1.10-9 M and 2,4.10-10 M, with casein, p-nitroanilide benzoylarginine and tosylarginine methyl ester used as substrates, respectively. The corresponding dissociation rate constants for the subtilisin-inhibitor complex were equal to 1.10-9 M and 4.10-10 M with casein and carbobenzoxy-L-alanyl-L-alanyl-L-leucin p-nitroanilide used as substrates, respectively.  相似文献   

10.
D Liu  R D Feinman  D Wang 《Biochemistry》1987,26(17):5221-5226
Urea caused dissociation of alpha 2-macroglobulin (alpha 2M) into half-molecules (two disulfide-bonded subunits) as revealed by gel electrophoresis. The fraction of whole molecules remaining decreased with increasing urea concentration. Half-dissociation occurred at about 2.2 M. The ability of alpha 2M to inhibit trypsin also decreased with increasing urea concentration, but the activity-urea curve was shifted to the right as compared to the dissociation-urea curve. Thus, at 3 M urea, gel electrophoresis showed only 6.6% whole molecules, whereas the trypsin inhibitory activity was 95% of that in buffer with no urea, suggesting that half-molecules retain activity. In addition, complexes formed in urea with 125I-labeled trypsin were observed to migrate as half-molecules even though only 50% of such complexes were covalent. These results are surprising in light of the report by Gonias and Pizzo [Gonias, S., & Pizzo, S. (1983) Biochemistry 22, 536-546] that half-molecules formed by mild reduction are active; reduction is assumed to divide the molecule along an axis orthogonal to the break caused by urea. This suggests that active half-molecules can be formed by splitting either the covalent or noncovalent bonds that hold the subunits together. A model is proposed that can account for this possibility. It has the same dimensions and symmetry as a previous model of Feldman et al. [Feldman, S.R., Gonias, S.L., & Pizzo, S.V. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704] and accounts in a similar way for previous functional studies of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The structure of the 21 S latent activity dynein-1 (LAD-1) particle has been investigated by limited proteolytic cleavage with trypsin and with chymotrypsin. The A alpha and A beta heavy polypeptide chains show different characteristic digestion patterns which remain essentially unchanged whether the chains are components of the 21 S LAD-1 particle or are in the form of separated fractions, although changes in their relative digestion rates upon separation suggest that the A beta chain in the 21 S particle is partially protected from digestion by the presence of the A alpha chain and intermediate chains 2 and 3. The progressive digestion of the A chains and intermediate chains causes an eventual dissociation of the 21 S particle to smaller particles sedimenting in the range 10 to 14 S. Within this broad peak, the fragments from the A alpha chain peak in the 10 to 12 S region, while those from the A beta chain peak in the 12 to 14 S region. Digestion of whole axonemes to a stage at which the A alpha chain is substantially digested but the A beta chain remains mostly intact, enables a large amount of 21 S dynein-1 to be solubilized by 3 mM MgATP2(-) in the presence of 0.1 M NaCl, pH 7.0. This indicates that the affinity of the 0.6 M NaCl-sensitive bond of the outer arm to the A-tubule is diminished substantially by the early stages of digestion of the A alpha chain.  相似文献   

12.
The dissociation of the tetrameric alpha 2-macroglobulin molecule into two half-molecular fragments, which occurs at pH less than 4.5, has been investigated using the small-angle neutron scattering method, and test of trypsin binding activity. Best fit with the relative forward scattering of neutrons is obtained for a model where the dissociation of the protein is driven by the uptake of H+ on altogether four acid-base groups, one per monomeric subunit of alpha 2-macroglobulin. These groups are not (or only slightly) accessible in the native tetramer, but become exposed to the solvent after dissociation of the protein. The H(+)-binding constant obtained for these groups, after dissociation of the protein, log K1 in the range 4.2-4.5, suggests that they are most probably carboxylate groups. From the about 10% increase in the radius of gyration, which occurs when lowering the pH from 4.5 to 2.0, we can conclude that the dissociation is associated with a change in structure of the protein. Tests of trypsin binding show that there is also an irreversible loss in trypsin binding activity, which is directly related to the fraction of dissociated protein. Thus, at pH less than 4.5, there is a transition of alpha 2-macroglobulin which results simultaneously in dissociation, disorganisation of the conformation of the subunits and loss in activity.  相似文献   

13.
J L Martini  F Pochon 《Biochimie》1989,71(3):325-332
The inhibition rates and spectral characteristics of 2 probes specific for the active-site serine residue of proteases were examined for evidence of conformational change of the proteases upon their binding to alpha 2-macroglobulin (alpha 2M). Elastase, chymotrypsin, trypsin, and plasmin were reacted with (7-nitrobenz-2-oxa-1,3-diazole) aminoethyl- and aminopentyl methylphosphonofluoridate. The inhibition rate constants depend on the chain length of the aminoalkyl moiety of the probe and range from 10(5) to 10(4) M-1 min-1 for elastase and chymotrypsin. They are significantly modified when the proteases are stoichiometrically bound to alpha 2M. The absorption maximum of the chromophore appears in the range of 460-470 nm and 475-480 nm for the aminoethyl- and aminopentyl- conjugates, respectively. The fluorescence emission is maximal around 530 nm with a low quantum yield of about 3%. These spectral characteristics are altered in different ways by the covalent or non-covalent binding mode of the protease to alpha 2M. Finally, the CD spectrum of the NBD aminoethyl and aminopentyl elastase and chymotrypsin conjugates exhibits intense optical activity in the absorbing band of the NBD-moiety. These chiral properties are greatly altered upon binding of the protease to alpha 2M. All these results strongly suggest a conformational change in the protease at its active center upon its binding to alpha 2M; this conformational change could be taken into account to explain the alteration of the catalytic properties of the alpha 2M-bound proteases.  相似文献   

14.
The interaction alpha 2-macroglobulin with four proteinases has been investigated by binding assays and by gel electrophoresis. At pH 7.65 the binding ratios of the proteinase-alpha 2-macroglobulin complexes were found to be 2:1 (trypsin and papain), 1.4:1 (chymotrypsin), and 1:1 (plasmin). The progressive decrease in the stoichiometry of the three seryl proteinase complexes was paralleled by a concomitant decrease in the proteinase-dependent specific cleavage of the alpha 2-macroglobulin peptide chains. Rate studies have shown that the relative rates of reaction of the proteinases with alpha 2-macroglobulin also varied greatly: papain greater than trypsin greater than chymotrypsin greater than plasmin. The data suggest that the ability of a proteinase to saturate the second proteinase binding site is a reflection of its ability to bind to alpha 2-macroglobulin and cleave the second pair of scissile alpha 2-macroglobulin peptide bonds before the alpha 2-macroglobulin has undergone the conformational change initiated by the formation of the 1:1 proteinase alpha 2-macroglobulin complex.  相似文献   

15.
A protein with trypsin inhibitory activity was purified to homogeneity from the seeds of Murraya koenigii (curry leaf tree) by ion exchange chromatography and gel filtration chromatography on HPLC. The molecular mass of the protein was determined to be 27 kDa by SDS-PAGE analysis under reducing conditions. The solubility studies at different pH conditions showed that it is completely soluble at and above pH 7.5 and slowly precipitates below this pH at a protein concentration of 1 mg/ml. The purified protein inhibited bovine pancreatic trypsin completely in a molar ratio of 1:1.1. Maximum inhibition was observed at pH 8.0. Kinetic studies showed that Murraya koenigii trypsin inhibitor is a competitive inhibitor with an equilibrium dissociation constant of 7 x 10(-9) M. The N-terminal sequence of the first 15 amino acids showed no similarity with any of the known trypsin inhibitors, however, a short sequence search showed significant homology to a Kunitz-type chymotrypsin inhibitor from Erythrina variegata.  相似文献   

16.
Two new double-headed protease inhibitors have been isolated from black-eyed peas. The isoinhibitors can be purified to homogeneity with greater than 90% recovery in a four-step procedure by means of sequential affinity chromatography on trypsin-Sepharose and chymotrypsin-Sepharose affinity columns. The isoinhibitors both have molecular weights near 8,000 and both have the same NH1-terminal residue serine. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) has an isoelectric point of 5.1 and inhibits trypsin and chymotrypsin simultaneously. Black-eyed pea trypsin inhibitor (BEPTI) has an isoelectric point of 6.5 and inhibits 2 molecules of trypsin simultaneously. BEPTI binds to chymotrypsin-Sepharose above pH 6 but does not inhibit chymotrypsin in the standard inhibitor assay with 10-3 M substrate. These new inhibitors are distinct from the Ventura inhibitor isolated from Serido black-eyed peas. An endogenous seed protease has been isolated from black-eyed peas by affinity chromatography on soybean inhibitor-carboxymethylcellulose affinity columns. A protease-BEPCI complex has been isolated by ion exchange chromatography. A dual physiological function of inhibition and protection of the seed protease is suggested as a plausible role of seed protease inhibitors.  相似文献   

17.
1. p-Nitrophenyl N(2)-acetyl-N(1)-benzylcarbazate (NPABC) was synthesized and shown to acylate alpha-chymotrypsin stoicheiometrically; reaction at 25 degrees occurs almost instantaneously at pH7.04 and within 2min. at pH5.04 and there is no observable turnover during 10min. 2. The absolute molarity of solutions of alpha-chymotrypsin can be determined by spectrophotometric measurement of the p-nitrophenol liberated during the acylation step; the results obtained at pH5.04 and pH7.04 agree with one another and with those determined by the method of Erlanger & Edel (1964). 3. Trypsin reacts stoicheiometrically, but more slowly than alpha-chymotrypsin, with NPABC, and it, like chymotrypsin, can be spectrophotometrically titrated at pH7.04. At pH5.04, however, reaction between trypsin and NPABC is sufficiently slow for the reagent to be nearly specific for alpha-chymotrypsin. Specificity for one or other enzyme can be ensured by using soya-bean trypsin inhibitor or the chymotrypsin inhibitor l-1-chloro-3-toluene-p-sulphonamido-4-phenylbutan-2-one. Bovine thrombin does not react with NPABC. 4. Evidence is presented that indicates that acylation of alpha-chymotrypsin and trypsin by NPABC occurs at the active centres of the enzymes. 5. Evidence was obtained that indicates that one or more tryptophan residues move into a more hydrophobic environment when alpha-chymotrypsin and trypsin are acylated by NPABC.  相似文献   

18.
Complex formation between two new double-headed protease inhibitors from black-eyed peas, trypsin-chymotrypsin inhibitor (BEPCI) and a trypsin inhibitor (BEPTI), and trypsin and chymotrypsin was investigated in the concentration range from 10-8 to 10-4 M by titration experiments and gel filtration chromatography. Dissociation equilibrium constants measured for complexes detected in the titration experiments range from as large as 10-8 M for trypsin bound nonspecifically to the chymotrypsin site of BEPCI to as small as 10-18 M2 for the interaction of BEPCI with chymotrypsin. The identity and stoichiometry of complexes detected during titration experiments were confirmed by gel filtration of mixtures of native and fluorescently labeled proteases and inhibitors. Half-site reactivity is observed in the formation of complexes between BEPCI or BEPTI and trypsin and chymotrypsin at all experimentally practical concentrations. The double-headed complex contains 1 molecule each of trypsin, chymotrypsin, and BEPCI dimer. The bimolecular rate constants of complex formation between trypsin or chymotrypsin and isolated BEPCI oligomers range from 1.8 X 10(5) M-1 S-1 for chymotrypsin and BEPCI monomer to 4.4 X 10(7) M-1 S-1 for trypsin and the rapidly equilibrating BEPCI dimer. The estimated rate constants for the dissociation of half-site-liganded dimer complexes and liganded monomer complexes range from 7.5 X 10-3 S-1 for the trypsin-liganded BEPCI monomer complex to 1.6 X 10-6 S-1 for the chymotrypsin-liganded BEPCI dimer complex.  相似文献   

19.
Three cationic proteins from the granules of human neutrophil granulocytes were obtained in a high degree of purity be means of affinity chromatography on 4-phenylbutylamine-Sepharose. Together with lysozyme, the three cationic proteins exhibit the highest electrophoretic mobility toward the cathode in acrylamide gels at moderately acid pH, among the granule constituents that are solubilized in 0.1 M phosphate buffer, pH 7.0, containing 1 M NaCl. The three cationic proteins represent a group of "neutral proteases" distinct from elastase and collagenase. They hydrolyze casein, azocasein and the chymotrypsin substrate N-acetyl-L-tyrosine ethyl ester. Optimal activity is found at pH 7.4-7;5. The enzymes are inhibited by the specific chymotrypsin inhibitor N-tosyl-L-phenylalanylchloromethane and by the naturally occurring inhibitors alpha-antichymotrypsin, alpha-1-antitrypsin, as well as by the trypsin inhibitors from soy beans and limabeans.  相似文献   

20.
An Apios americana trypsin inhibitor, AATI, was purified from Apios tubers by chromatography on DEAE Cellulofine A-500 and Sephadex G-50. The molecular mass of AATI was determined to be 6,437 Da by matrix-assisted laser desorption and ionization time-of-flight mass spectrometer (MALDI-TOF-MS). It showed strong inhibitory activity toward serine proteases, and the inhibition constants toward trypsin and chymotrypsin were 3.0 x 10(-9) M and 1.0 x 10(-6) M respectively. The inhibitory activity was not affected by heating at 80 degrees C for 2 h or by incubation at a wide range of pH values, suggesting that AATI has remarkable heat-stability and pH-stability. AATI cDNA consists of 552 nucleotides, and includes an open reading frame encoding a protein of 116 amino acids. The results of N-terminal amino acid sequencing of AATI and MALDI-TOF-MS analysis suggested that the deduced amino acid sequence had 50 and seven extra amino acids at the N- and C-termini respectively. Thus the mature AATI protein consists of 59 amino acid residues. Comparison of the amino acid sequence with those of the trypsin inhibitors from plants suggests that AATI belongs to the Bowman-Birk family and that it contains two possible reactive sites toward trypsin at Lys62 and Arg88.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号